바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Perception of Biological Motion: Difference Between the Visual Fields and Comparison with Non-Biological Motion

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2013, v.25 no.1, pp.25-43
https://doi.org/10.22172/cogbio.2013.25.1.002

Abstract

The present study investigated perception of biological motion (BM) focusing on two issues. Although it has been reported that the right posterior region of the superior temporal sulcus (pSTS) is more strongly activated than the left pSTS when viewing BM, the reason is not well understood. Second, most previous studies have focused on the accuracy of BM perception while reaction time (RT) to BM compared with other motion signals remains relatively unknown. BM and non-BM stimuli were briefly presented in each (left and right) visual field in Task 1. In Task 2, the same stimuli were displayed at the center. RT and accuracy were measured in both tasks. To explore a possible perceptual correlate of the neural anisotropy in the pSTS, RT and accuracy between the two visual fields were compared (Task 1). To examine the efficiency of BM processing, RT and accuracy differences between BM and non-BM were examined (Task 1 and Task 2). The result from Task 1 demonstrated that RT was faster and accuracy was higher when BM was presented in the left visual field. This suggests a perceptual correlate of greater right pSTS activation associated with BM perception. The results from Task 1 and Task 2 revealed that BM was detected more quickly and accurately than non-BM, suggesting that BM processing is more efficient than other global motion processing when information is limited by brief exposure. Analysis of error trials from the two tasks also suggests a perceptual bias of judging ambiguous motion signals as BM.

keywords
Biological motion, Visual field, Perception, Superior temporal sulcus (STS), Reaction time, 생물형 운동, 시야, 지각, 상측두구, 반응 시간

Reference

1.

Beauchamp, M. S., Lee, K. E., Haxby, J. V., & Martin, A. (2003). fMRI responses to video and point-light displays of moving humans and manipulable objects. Journal of Cognitive Neuroscience, 15, 991-1007.

2.

Bertenthal, B. I., & Pinto, J. (1994). Global processing of biological motions. Psychological Science, 5, 221-225.

3.

Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58, 47-73.

4.

Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 16, 3737-3744.

5.

Bradshaw, J. L., Nettleton, N. C., Wilson, L., & Nathan, G. (1984). A moving video window or a mask yoked to eye movements: Experiments on letters, words, and biological movement with prolonged hemifield stimulation. International Journal of Neuroscience, 25, 81-98.

6.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 443-446.

7.

Brandt, T., Bucher, S. F., Seelos, K. C., & Dieterich, M. (1998). Bilateral functional MRI activation of the basal ganglia and middle temporal/medial superior temporal motion-sensitive areas. Archives of Neurology, 55, 1126-1131.

8.

Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology, 46, 369-384.

9.

Chang, D. H. F., & Troje, N. F. (2009). Characterizing global and local mechanisms in biological motion perception. Journal of Vision 9(5):8, 1-10.

10.

Cutting, J. E., & Kozlowski, L. T. (1977). Recognition of friends by their walk: gait perception without familiarity cues. Bulletin of the Psychonomic Society, 9, 353-356.

11.

Cutting, J. E., Moore, C., & Mossison, R. (1988). Masking the motions of human gait. Perception and Psychophysics, 44, 339 -347.

12.

de Lussanet, M. H. E., Fadiga, L., Michels, L., Seitz, R. J., Kleiser, R., & Lappe, M. (2008). Interactino of visual hemifield and body view in biological motion perception. European Journal of Neuroscience, 27, 514-522.

13.

Dittrich, W. (1993). Action categories and the perception of biological motion. Perception, 22, 15-22.

14.

Dittrich, W. H., Troscianko, T., Lea S. E. G., & Morgan, D. (1996). Perception of emotion from dynamic point-light displays represented in dance. Perception, 25, 727- 738.

15.

Fox, R., & McDaniel, C. (1982). The perception of biological motion by human infants. Science, 218, 486-487.

16.

Giese, M. A., & Poggio, T. (2003). Neural mechanisms for the recognition of biological movements. Nature Reviews Neuroscience, 4, 179-192.

17.

Grèzes, J., Costes, N., & Decety, J. (1998). Top-down effect of strategy on the perception of human biological motion: a PET investigation. Cognitive Neuropsychology, 15, 553-582.

18.

Grèzes, J., Fonlupt, P., Bertenthal, B., Delon-Martin, C., Segebarth, C., & Decety, J. (2001). Does perception of biological motion rely on specific brain regions? NeuroImage, 13, 775-785.

19.

Grossman, E. D., Battelli, L. & Pascual-Leone, A. (2005). Repetitive TMS over posterior STS disrupts perceptionbiological motion. Vision Research, 45, 2847-2853.

20.

Grossman, E. D., & Blake, R. (2001). Brain activity evoked by inverted and imagined biological motion. Vision Research 41, 1475-1482.

21.

Grossman, E. D., & Blake, R. (2002). Brain areas active during visual perception of biological motion. Neuron, 35, 1157-1165.

22.

Grossman, E. D., Donnelly, M., Price, R., Morgan, V., Pickens, D., Neighbor, G., & Blake, R. (2000) Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 711-720.

23.

Grossman, E. D., Jardine, N.L ., & Pyles, J. A. (2010). fMR-adaptation reveals invariant coding of biological motion on the human STS. Frontiers in Human Neuroscience, 4, 1-17.

24.

Gurnsey, R., & Troje, N. F. (2010). Peripheral sensitivity to biological motion conveyed by first and second-order signals. Vision Research, 50, 127-135.

25.

Gurnsey, R., Roddy, G., Ouhnana, M., & Troje, N. F. (2008). Stimulus magnification equates identification and discrimination of biological motion across the visual field. Vision Research, 48, 2827-2834.

26.

Ikeda, H., Blake, R., & Watanabe, K. (2005). Eccentric perception of biological motion is unscalably poor. Vision Research, 45, 1935 -1943.

27.

Iwamura, Y. (2000). Bilateral receptive field neurons and callosal connections in the somatosensory cortex. Philosophical Transactions of the Royal Society B, 355, 267-273.

28.

Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201-211.

29.

Kim, J. (2012). Biological motion:Perceptual processing, neural mechanisms and clinical application. The Korean Journal of Cognitive and Biological Psychology, 24(4), 357-392.

30.

Kim, J., Park, S., & Blake, R. (2011). Perception of biological motion in schizophrenia and healthy individuals: A behavioral and fMRI study. PLos ONE, 6:e19971.

31.

Lange, J., & Lappe, M. (2006). A model of biological motion perception from configural form cues. Journal of Neuroscience, 26, 2894-2906.

32.

Lange, J., & Lappe, M. (2007). The role of spatial and temporal information in biological motion perception. Advances in Cognitive Psychology, 3, 419-428.

33.

Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from thier movement. Journal of Experimental Psychology: Human Perception and Performance, 31, 210- 220.

34.

MacArthur, L. Z., & Baron, M. K. (1983). Toward an ecological theory of social perception. Psychological Review, 90, 215-238.

35.

Mather, G., & Murdoch, L. (1994). Gender discrimination in biological mtion displays based on dynamic cues. Proceedings of the Royal Society of London. Series B, Biological. Science. 258, 273-279.

36.

Neri, P., Luu, J. Y., & Levi, D. M. (2006). Meaningful interactions can enhance visual discrimination of human agents. Nature Neuroscience, 9, 1186-1192.

37.

Neri, P., Morrone, C., & Burr, D (1998). Seeing biological motion. Nature, 395, 894-896.

38.

Pelli, D. G. (1997). The video toolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437-442.

39.

Pelphrey, K. A., Mitchell, T. V., McKeown, M. J., Goldstein, J., Allison, T., & McCarthy, G. (2003). Brain activity evoked by the perception of human walking: Controlling for meaningful coherent motion. Journal of Neuroscience, 23, 6819-6825.

40.

Pelphrey, K. A., Morris, J. P., Michelich, C. R., Allison, T., & McCarthy, G. (2005). Functional anatomy of biological motion perception in posterior temporal cortex: an fMRI study of eye, mouth, and hand movements. Cerebral Cortex, 15, 1866-1876.

41.

Peuskens H, Vanrie J, Verfaillie K, & Orban GA (2005) Specificity of regions processing biological motion. European Journal of Neuroscience, 21, 2864-2875.

42.

Puce, A., Allison, T., Bentin, S., Gore, J. C., & McCarthy, G. (1998). Temporal cortex activation in human viewing eye and mouth movements. Journal of Neuroscience, 18, 2188-2199.

43.

Santi, A., Servos, P., Vatikiotis-Bateson, E., Kuratate, T., & Munhall, K. (2003). Perceiving biologicaldissociating visible speech from walking. Journal of Cognitive Neuroscience, 15, 800-809.

44.

Schouten, J. F., & Bekker, J. A. M. (1967). Reaction time and accuracy. Acta Psychologica, 27, 143-153.

45.

Sergent, J. (1982). Theoretical and methodological consequences of variations in exposure duration in visual laterality studies. Perception and Psychophysics, 31, 451-461.

46.

Sergent, J. (1983). Role of the input in visual hemispheric asymmetry. Psychological Bulletin, 93, 481-512.

47.

Sumi, S. (1984). Upside-down presentation of the Johansson moving light-spot pattern. Perception, 13, 283-286.

48.

Thompson, J. C., Clarke, M., Stewart, T., & Puce, A. (2005). Configural processing of biologicalin human superior temporal sulcus. Journal of Neuroscience, 25, 9059-9066.

49.

Thurman, S. M., Giese, M. A., & Grossman, E. D. (2010). Perceptual and computational analysis of critical features for biological motion. Journal of Vision, 10(12):15, 1-14.

50.

Troje, N. F., Westhoff, C. (2006). The inversion effect in biological motion perception: Evidence for a “life detector”? Current Biology, 16, 821-824.

51.

Vaina, L. M., Solomon, J., Chowdhury, S., Sinha, P., & Belliveau, J. W. (2001). Functional neuroanatomy of biological motion perception in humans. Proceedings of the National Academy of Sciences of the United States of America, 98, 11656-11661.

52.

Wickelgren, W. A. (1977). Speed-accuracy tradeoff and information processing dynamics. Acta Psychologica, 41, 67-85.

The Korean Journal of Cognitive and Biological Psychology