ISSN : 1226-9654
Humans are remarkably good at interpreting the identity and intentions of other people based on “body language” - dynamic cues portraying bodily movements. Befitting the important social significance of this perceptual ability, the human brain contains neural machinery uniquely responsive to the kinematics specifying human activity, including “biological motion” portrayed using just a small number of motion tokens specifying articulations of the body and limbs. We have established stimulus conditions that dissociate neural activity produced by presentation of biological events outside of conscious awareness from neural activity associated with conscious visual awareness of those events. We have used those stimulus conditions in concert with functional magnetic resonance imaging (fMRI) to measure neural responses in the posterior superior temporal sulcus (STSp), a crucial component in the neural network believed to underlie perception of biological motion. STSp was activated only when people actually perceived biological events and not when those events were registered outside of conscious awareness. These results provide direct evidence in support of the growing conviction that STSp, situated uniquely at the confluence of dorsal and ventral stream pathways, is intimately involved in actual perception of biologically relevant events.
Adolphs, R. (1999). Social cognition and the human brain. Trends in Cognitive Sciences, 3, 469-479.
Adolphs, R. (2003). Cognitive neuroscience of human social behavior. Nature Reviews Neuroscience, 4, 165-178.
Ahlström, V., Blake, R., & Ahlström, U. (1997). Perception of biological motion. Perception, 26, 1539-1548.
Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: role of the STS region. Trends in Cognitive Sciences, 4, 267-278.
Alpers, G., & Pauli, P. (2006). Emotional pictures predominate in binocular rivalry. Cognition & Emotion, 20(5), 596-607.
Anderson, E., Siegel, E. H., Bliss-Moreau, E., & Feldman Barrett, L. (2011). The visual impact of gossip. Science, 332(6036), 1446- 1448.
Beintema, J. A., Halfwerk, W., & van Wezel, R. J. A. (2004). Less rivalry with more biological motion [Abstract]. Journal of Vision, 4(8), 241a, http://journalofvision.org/4/8/241/,doi: 10.1167/4.8.241.
Blake, R., & Fox, R. (1974). Binocular Rivalry Suppression: Insensitive to spatial frequency and orientation change. Vision Research, 15, 687-692.
Blake, R., & Logothetis, N. K. (2002). Visual competition. Nature Reviews Neuroscience, 3, 13-21.
Blake, R., & Shiffrar, M. (2007). Perception of human motion. Annual Review of Psychology, 58, 47-73.
Blake, R., Yu, K., Fukuda, H., & Lokey, M. (1998). Binocular rivalry and visual motion. Journal of Cognitive Neuroscience, 10, 46-60.
Blakemore, S-J., and Decety, J. (2001) From the perception of action to the understanding of intention. Nature Reviews Neuroscience, 2, 561-567.
Bonda, E., Petrides, M., Ostry, D., & Evans, A. (1996). Specific involvement of human parietal systems and the amygdala in the perception of biological motion. Journal of Neuroscience, 16, 3737-3744.
Brothers, L. (1990). The social brain: a project for integrating primate behavior and neurophysiology in a new domain. Concepts in Neuroscience, 1, 27-51.
Crick, F. (1996). Visual perception: rivalry and consciousness. Nature, 379, 485-486.
Dittrich, W. H., Troscianko, T., Lea, S. E. G., & Morgan, D. (1996). Perception of emotion from dynamic point-light displays represented in dance. Perception, 25, 727- 738.
Grossman, E., & Blake, R. (2002). Brain areas active during visual perception of biological motion. Neuron, 35, 1167-1176.
Grossman, E., Blake, R., & Kim, C.-Y. (2004) Learning to see biological motion: Brain activity parallels behavior. Journal of Cognitive Neuroscience, 16(9), 1669-1679.
Grossman, E., Donnelly, M., Price, R., Pickens, D., Morgan, V., Neighbor, G., & Blake, R. (2000). Brain areas involved in perception of biological motion. Journal of Cognitive Neuroscience, 12, 711-720.
Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14, 201-211.
Kim, C.-Y., & Blake, R. (2005). Psychophysical magic: rendering the normally visible ‘invisible’. Trends in Cognitive Sciences, 9(8), 381-387.
Kim, J. (2012). Biological motion, perceptual processing, neural mechanisms and clinical application. Korean Journal of Cognitive and Biological Psychology, 24(4), 357-392.
Kim, J., Park, S., & Blake, R. (2011). Perception of biological motion in schizophrenia and healthy individuals: A behavioral nd fMRI study. PLos ONE, 6:e19971.
Kozlowski, L., & Cutting, J. E. (1977). Recognizing the sex of a walker from a dynamic point-light display. Perception & Psychophysics, 21, 575-580.
Lumer, E. D., Friston, K., & Rees, G. (1998). Neural correlates of perceptual rivalry in the human brain. Science, 280, 1930-1934.
Mather, G., & Murdoch, L. (1994). Gender discrimination in biological motion displays based on dynamic cues. Proceedings of the Royal Society of London B, 258, 273-279.
Morris, J. S., Frith, C. D., Perrett, D. I., Rowland, D., Young, A. W., Calder, A. J., & Dolan, R. J. (1996). A differential neural response in the human amygdala to fearful and happy facial expressions, Nature, 383, 812-815.
Pasley, B. N., Mayes, L. C., & Schultz, R. T. (2004). Subcortical discrimination of unperceived objects during binocular rivalry. Neuron, 42, 163-172.
Pavlova, M., Krägeloh-Mann, I., Sokolov, A., & Birbaumer, N. (2001). Recognition of point-light biological motion displays by young children. Perception, 30, 925-933.
Pavlova, M., Sokolov, A., Birbaumer, N., & Krägeloh-Mann, I. (2008). Perception and understanding of others' actions and brain connectivity. Journal of Cognitive Neuroscience, 20, 494-504.
Pelphrey, K. A., & Morris, J. P. (2006). Brain mechanisms for interpreting the actions of others from biological motion cues. Current Directions in Psychological Science, 15, 136-140.
Polonsky, A., Blake, R., Braun, J., & Heeger, D. (2000). Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry. Nature Neuroscience, 3, 1153-1159.
Ptito, M., Faubert, J., Gjedde, A., & Kupers, R. (2003). Separate neural pathways for contour and biological-motion cues in motion-defined animal shapes. NeuroImage, 19, 246-252.
Pyles, J. A., Garcia, J. O., Hoffman, D. D., & Grossman, E. D. (2007). Visual perception and neural correlates of novel ‘biological motion’. Vision Research, 47, 2786-2797.
Servos, P., Osu, R., Santi, A., & Kawato, M. (2002). The neural substrates of biological motion perception: an fMRI study. Cerebral Cortex, 12, 772-782.
Tong, F., Nakayama, K., Vaughan, J. T., & Kanwisher, N. (1998). Binocular rivalry and visual awareness in human extrastriate cortex. Neuron, 21, 753-759.
Troje, N. F. (2002). Decomposing biological motion: A framework for analysis and synthesis of human gait patterns. Journal of Vision, 2, 371-387, http://journalofvision. org/2/5/2/, doi:10.1167/2.5.2.
Thompson, J. C., Clarke, M., Stewart, T., Puce, A. (2005). Configural processing of biological motion in human superior temporal sulcus. Journal of Neuroscience, 25, 9059-9066.
Thornton, I. M., Rensink, R. A., Shiffrar, M. (2002). Active versus passive processing of biological motion. Perception, 31, 837-853.
Vaina, L. M., Solomon, J., Chowdhury, S., Sinha, P., & Belliveau, J. W. (2001). Functional neuroanatomy of biological motion perception in humans. Proceedings of the National Academy of Sciences USA, 98, 11656-11661.
Whalen, P. J., Rauch, S. L., Etcoff, N. L., Mclnerney, S. C., Lee, M. B., & Jenike, M. A. (1998). Masked presentations of emotional facial expressions modulate amygdala activity without explicit knowledge. Journal of Neuroscience, 18(1), 411-418.
Williams, M. A., Morris, A. P., McGlone, F., Abbott, D. F., & Mattingley, J. B. (2004). Amygdala responses to fearful and happy facial expressions under conditions of binocular suppression. (2004). Journal of Neuroscience, 24(12), 2898-2904.
Winston, J. S., Strange, B. A., O'Doherty, J., and Dolan, R. J. (2002). Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nature Neuroscience, 5, 277-283.
Wunderlich, K., Schneider, K. A., & Kastner, S. (2005). Neural correlates of binocular rivalry in the human lateral geniculate nucleus. Nature Neuroscience, 8(11), 1595-1602.
Wyk, B. C. V., Hudac, C. M., Carter, E. J., Sobel, D. M., & Pelphrey, K. A. (2009). Action understanding in the superior temporal sulcus region. Psychological Science, 20, 771-777.
Yoon, K. L., Joormann, J., Hong, S. W., & Kang, P. (2009). Perception of facial expressions of emotion during binocular rivalry. Emotion, 9(2), 172-182.