바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-9654
  • E-ISSN2733-466X
  • KCI

중다 수준의 과제 전환에 관여하는 뇌신경망: 메타분석

Neural Mechanisms Involved in Multi-Dimensional Task Switching: A Meta-Analysis

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2013, v.25 no.3, pp.341-358
https://doi.org/10.22172/cogbio.2013.25.3.006
전윤수 (경북대학교 심리학과)
김초복 (경북대학교)

초록

과제 전환(task switching)을 이용한 인지적 통제에 관한 최근 연구들은 과제에 포함된 정보처리 유형에 따라 관여하는 뇌 영역이 다름을 확인하였다. 그러나 과제 전환에 빈번히 사용된 과제들 중에는 중다 수준의 정보처리 유형이 포함됨에도 불구하고, 이와 관련된 뇌기능에 대해서는 알려진 바가 없다. 따라서 본 연구는 과제 전환에 관한 기존의 뇌영상 연구들에 대한 메타분석을 통해 중다 수준에서의 과제전환에 더 많은 인지적 자원이 요구됨으로 인해 추가적인 뇌 영역의 활성화가 나타나는지 확인하고자 하였다. 총 38개의 연구(1995년~2011년)에서 사용된 433개의 좌표들을 대상으로 활성화 가능성 추정(activation likelihood estimation)방법을 이용하여 메타 분석 하였다. 분석 결과, 중다 수준 과제전환을 수행할 때 좌우 복외측 전전두영역(BA 45), 전대상회(BAs 24, 32) 및 좌측 하두정소엽(BA 40)에서 추가적인 활성화가 관찰되었다. 또한 중다 수준과 단일 수준에 공통적으로 관여하는 영역으로 좌반구의 하전두연접과 후두정피질, 전대상회로 나타났다. 이러한 결과는 과제 전환과 관련된 인지적 통제의 뇌 신경망이 정보처리 수준에 따라 달라질 수 있음을 시사한다.

keywords
과제전환 패러다임, 인지적 통제, 메타분석, fMRI, task switching paradigm, cognitive control, meta-analysis, fMRI

Abstract

Recent studies on task switching have identified that the brain regions involved in cognitive control are different according to the information processing types included in the task. Task switching paradigms used in previous studies has included two or more information processing levels. However, neural mechanisms underlying multi-dimensional task switching has been unknown. In this study, we performed three meta-analyses to test whether the additional brain regions are involved in multi-dimensional task switching compared to uni-dimensional task switching. From 1995 to 2011, a total of 38 switching studies with 433 activation coordinates were analyzed by using the activation likelihood estimation (ALE) method. The result showed that the bilateral ventrolateral prefrontal cortex, the anterior cingulate cortex, and the left inferior parietal lobule were more activated in multi-dimensional switching compared to uni-dimensional switching. An additional conjunction analysis revealed that uni- and multi-dimensional switches commonly recruit the left inferior frontal junction, the posterior parietal cortex, and the anterior cingulate cortex. Our results suggest that neural networks of cognitive control associated with task switching could be different according to the information processing levels.

keywords
과제전환 패러다임, 인지적 통제, 메타분석, fMRI, task switching paradigm, cognitive control, meta-analysis, fMRI

참고문헌

1.

김정훈, & 김초복 (2004). 얼굴인식에서 전체윤곽-국소특징에 대한 선택적 뇌 활성화: fMRI 연구. 한국심리학회지: 인지 및 생물, 16(3), 337-352.

2.

이승복, 연은경, & 윤효운 (2004). 한국어-영어 이중 언어 문장 의미처리의 신경적 기초: 기능적 자기공명 영상 연구. 한국심리학회지: 인지 및 생물, 16(1), 61-75.

3.

조수현 (2011). 유동 지능에 따른 인지 제어 관련 뇌 활동의 차이 분석. 한국심리학회지: 인지 및 생물, 23(3), 431-463.

4.

Badre, D., & Wagner, A. D. (2006). Computational and neurobiological mechanisms underlying cognitive flexibility. Proceedings of the National Academy of Sciences USA, 103(18), 7186-7191.

5.

Barber, A. D., & Carter, C. S. (2005). Cognitive control involved in overcoming prepotent response tendencies and switching between tasks. Cerebral Cortex, 15(7), 899-912.

6.

Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108 (3), 624-652.

7.

Brass, M., & von Cramon, D. Y. (2004). Decomposing components of task preparation with functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 16(4), 609- 620.

8.

Cavina-Pratesi, C., Valyear, K. F., Culham, J. C., Kohler, S., Obhi, S. S., Marzi, C. A., et al. (2006). Dissociating arbitrary stimulus-response mapping from movement planning during preparatory period: evidence from event-related functional magnetic resonance imaging. The Journal of Neuroscience, 26(10), 2704-2713.

9.

Cools, R., Clark, L., & Robbins, T. W. (2004). Differential responses in human striatum and prefrontal cortex to changes in object and rule relevance. The Journal of Neuroscience, 24(5), 1129-1135.

10.

Crone, E. A., Wendelken, C., Donohue, S. E., & Bunge, S. A. (2006). Neural evidence for dissociable components of task-switching. Cerebral Cortex, 16(4), 475-486.

11.

D'Esposito, M., Postle, B. R., Jonides, J., & Smith, E. E. (1999). The neural substrate and temporal dynamics of interference effects in working memory as revealed by event-related functional MRI. Proceedings of the National Academy of Sciences USA, 96(13), 7514-7519.

12.

Derrfuss, J., Brass, M., & von Cramon, D. Y. (2004). Cognitive control in the posterior frontolateral cortex: evidence from common activations in task coordination, interference control, and working memory. NeuroImage, 23(2), 604-612.

13.

Desai, R., Conant, L. L., Waldron, E., & Binder, J. R. (2006). fMRI of Past Tense Processing: The Effects of Phonological Complexity and Task Difficulty. Journal of Cognitive Neuroscience, 18(2), 278-297.

14.

DiGirolamo, G. J., Kramer, A. F., Barad, V., Cepeda, N. J., Weissman, D. H., Milham, M. P., et al. (2001). General and task-specific frontal lobe recruitment in older adults during executive processes: a fMRI investigation of task-switching. Neuroreport, 12(9), 2065-2071.

15.

Dove, A., Pollmann, S., Schubert, T., Wiggins, C. J., & von Cramon, D. Y. (2000). Prefrontal cortex activation in task switching: an event-related fMRI study. Cognitive Brain Research, 9(1), 103-109.

16.

Dreher, J. C., & Grafman, J. (2003). Dissociating the roles of the rostral anterior cingulate and the lateral prefrontal cortices in performing two tasks simultaneously or successively. Cerebral Cortex, 13(4), 329-339.

17.

Dreher, J. C., Koechlin, E., Ali, S. O., & Grafman, J. (2002). The roles of timing and task order during task switching. NeuroImage, 17(1), 95-109.

18.

Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907-2926.

19.

Gold, B. T., & Buckner, R. L. (2002). Common prefrontal regions coactivate with dissociable posterior regions during controlled semantic and phonological tasks. Neuron, 35(4), 803- 812.

20.

Gould, R. L., Brown, R. G., Owen, A. M., ffytche, D. H., & Howard, R. J. (2003). fMRI BOLD response to increasing task difficulty during successful paired associates learning. NeuroImage, 20(2), 1006-1019.

21.

Gurd, J. M., Amunts, K., Weiss, P. H., Zafiris, O., Zilles, K., Marshall, J. C., et al. (2002). Posterior parietal cortex is implicated in continuous switching between verbal fluency tasks: an fMRI study with clinical implications. Brain, 125(5), 1024-1038.

22.

Hyafil, A., Summerfield, C., & Koechlin, E. (2009). Two mechanisms for task switching in the prefrontal cortex. The Journal of Neuroscience, 29(16), 5135-5142.

23.

Jancke, L., Himmelbach, M., Shah, N. J., & Zilles, K. (2000). The effect of switching between sequential and repetitive movements on cortical activation. NeuroImage, 12(5), 528-537.

24.

Kim, C., Cilles, S. E., Johnson, N. F., & Gold, B. T. (2012). Domain general and domain preferential brain regions associated with different types of task switching: A Meta-Analysis. Human Brain Mapping, 33(1), 130-142.

25.

Kim, C., Johnson, N. F., Cilles, S. E., & Gold, B. T. (2011). Common and Distinct Mechanisms of Cognitive Flexibility in Prefrontal Cortex. The Journal of Neuroscience, 31(13), 4771-4779.

26.

Laird, A. R., Fox, P. M., Price, C. J., Glahn, D. C., Uecker, A. M., Lancaster, J. L., et al. (2005). ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Human Brain Mapping, 25(1), 155- 164.

27.

Leung, H. C., & Cai, W. (2007). Common and differential ventrolateral prefrontal activity during inhibition of hand and eye movements. The Journal of Neuroscience., 27(37), 9893-9900.

28.

Lewandowska, M., Piatkowska-Janko, E., Bogorodzki, P., Wolak, T., & Szelag, E. (2010). Changes in fMRI BOLD response to increasing and decreasing task difficulty during auditory perception of temporal order. Neurobiology of Learning and Memory, 94(3), 382-391.

29.

Liston, C., Matalon, S., Hare, T. A., Davidson, M. C., & Casey, B. J. (2006). Anterior cingulate and posterior parietal cortices are sensitive to dissociable forms of conflict in a task-switching paradigm. Neuron, 50(4), 643- 653.

30.

Luks, T. L., Simpson, G. V., Feiwell, R. J., & Miller, W. L. (2002). Evidence for anterior cingulate cortex involvement in monitoring preparatory attentional set. NeuroImage, 17(2), 792-802.

31.

Meiran, N. (1996). Reconfiguration of processing mode prior to task performance. Journal of Experimental Psychology: Learning, Memory, and Cognition, 22(6), 1423-1442.

32.

Meiran, N., & Marciano, H. (2002). Limitations in advance task preparation: switching the relevant stimulus dimension in speeded same-different comparisons. Memory & Cognition, 30(4), 540-550.

33.

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.

34.

Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134-140.

35.

Nagahama, Y., Okada, T., Katsumi, Y., Hayashi, T., Yamauchi, H., Oyanagi, C., et al. (2001). Dissociable mechanisms of attentional control within the human prefrontal cortex. Cerebral Cortex, 11(1), 85-92.

36.

Parris, B. A., Thai, N. J., Benattayallah, A., Summers, I. R., & Hodgson, T. L. (2007). The role of the lateral prefrontal cortex and anterior cingulate in stimulus-response association reversals. Journal of Cognitive Neuroscience, 19(1), 13-24.

37.

Pessoa, L., Rossi, A., Japee, S., Desimone, R., & Ungerleider, L. G. (2009). Attentional control during the transient updating of cue information. Brain Research, 1247, 149-158.

38.

Pollmann, S., Dove, A., Yves von Cramon, D., & Wiggins, C. J. (2000). Event-related fMRI: comparison of conditions with varying BOLD overlap. Human Brain Mapping, 9(1), 26-37.

39.

Pollmann, S., Weidner, R., Muller, H. J., Maertens, M., & von Cramon, D. Y. (2006). Selective and interactive neural correlates of visual dimension changes and response changes. NeuroImage, 30(1), 254-265.

40.

Pollmann, S., Weidner, R., Muller, H. J., & von Cramon, D. Y. (2000). A fronto-posterior network involved in visual dimension changes. Journal of Cognitive Neuroscience, 12(3), 480- 494.

41.

Ravizza, S. M., & Carter, C. S. (2008). Shifting set about task switching: behavioral and neural evidence for distinct forms of cognitive flexibility. Neuropsychologia, 46(12), 2924- 2935.

42.

Rogers, R. D., Andrews, T. C., Grasby, P. M., Brooks, D. J., & Robbins, T. W. (2000). Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. Journal of Cognitive Neuroscience, 12(1), 142-162.

43.

Rubia, K., Smith, A. B., Woolley, J., Nosarti, C., Heyman, I., Taylor, E., et al. (2006). Progressive increase of frontostriatal brain activation from childhood to adulthood during event-related tasks of cognitive control. Human Brain Mapping, 27(12) ,973-993.

44.

Ruge, H., Brass, M., Koch, I., Rubin, O., Meiran, N., & von Cramon, D. Y. (2005). Advance preparation and stimulus-induced interference in cued task switching: further insights from BOLD fMRI. Neuropsychologia, 43(3), 340-355.

45.

Ruge, H., Muller, S. C., & Braver, T. S. (2010). Anticipating the consequences of action: An fMRI study of intention-based task preparation. Psychophysiology, 47(6), 1019-1027

46.

Rushworth, M. F., Hadland, K. A., Paus, T., & Sipila, P. K. (2002). Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. Journal of Neurophysiology, 87(5), 2577-2592.

47.

Sakai, K. (2008). Task Set and Prefrontal Cortex. Annual Review of Neuroscience, 31(1), 219-245.

48.

Schmitz, N., Rubia, K., Daly, E., Smith, A., Williams, S., & Murphy, D. G. (2006). Neural correlates of executive function in autistic spectrum disorders. Biological Psychiatry, 59(1), 7-16.

49.

Serences, J. T., Schwarzbach, J., Courtney, S. M., Golay, X., & Yantis, S. (2004). Control of object-based attention in human cortex. Cerebral Cortex, 14(12), 1346-1357.

50.

Smith, A. B., Taylor, E., Brammer, M., & Rubia, K. (2004). Neural correlates of switching set as measured in fast, event-related functional magnetic resonance imaging. Human Brain Mapping, 21(4), 247-256.

51.

Sohn, M. H., Ursu, S., Anderson, J. R., Stenger, V. A., & Carter, C. S. (2000). Inaugural article: the role of prefrontal cortex and posterior parietal cortex in task switching. Proceedings of the National Academy of Sciences USA, 97(24), 13448-13453.

52.

Sylvester, C.-Y. C., Wager, T. D., Lacey, S. C., Hernandez, L., Nichols, T. E., Smith, E. E., et al. (2003). Switching attention and resolving interference: fMRI measures of executive functions. Neuropsychologia, 41(3), 357-370.

53.

Thompson-Schill, S. L., D'Esposito, M., Aguirre, G. K., & Farah, M. J. (1997). Role of left inferior prefrontal cortex in retrieval of semantic knowledge: a reevaluation. Proceedings of the National Academy of Sciences USA, 94(26), 14792-14797.

54.

Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. NeuroImage, 16, 765-780.

55.

Vandenberghe, R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2001). Functional specificity of superior parietal mediation of spatial shifting. NeuroImage, 14(3), 661-673.

56.

Weidner, R., Pollmann, S., Muller, H. J., & von Cramon, D. Y. (2002). Top-down controlled visual dimension weighting: an event-related fMRI study. Cerebral Cortex, 12(3), 318-328.

57.

Wilkinson, D. T., Halligan, P. W., Marshall, J. C., Buchel, C., & Dolan, R. J. (2001). Switching between the forest and the trees: brain systems involved in local/global changed- level judgments. NeuroImage, 13(1), 56-67.

58.

Woolgar, A., Thompson, R., Bor, D., & Duncan, J. (2011). Multi-voxel coding of stimuli, rules, and responses in human frontoparietal cortex. NeuroImage, 56, 744-752.

59.

Wylie, G. R., Javitt, D. C., & Foxe, J. J. (2006). Jumping the gun: is effective preparation contingent upon anticipatory activation in task-relevant neural circuitry? Cerebral Cortex, 16(3), 394-404.

60.

Yeung, N., Nystrom, L. E., Aronson, J. A., & Cohen, J. D. (2006). Between-Task Competition and Cognitive Control in Task Switching. The Journal of Neuroscience, 26(5), 1429-1438.

61.

Zanolie, K., Teng, S., Donohue, S. E., van Duijvenvoorde, A. C., Band, G. P., Rombouts, S. A., et al. (2008). Switching between colors and shapes on the basis of positive and negative feedback: an fMRI and EEG study on feedback-based learning. Cortex, 44(5), 537- 547.

62.

Zanolie, K., Van Leijenhorst, L., Rombouts, S. A., & Crone, E. A. (2008). Separable neural mechanisms contribute to feedback processing in a rule-learning task. Neuropsychologia, 46(1), 117-126.

한국심리학회지: 인지 및 생물