바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Memory Representations in Visual Working Memory: Representational Quality and Memory Access

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2013, v.25 no.4, pp.425-444
https://doi.org/10.22172/cogbio.2013.25.4.003

Monica Fabiani (University of Illinois)
Gabriele Gratton (University of Illinois at Urbana-Champaign/Beckman Institute)

Abstract

Previously, Shin and colleagues (2006) reported sequential deflections of encoding-related lateralization (ERL) waveforms in event-related potentials (ERPs). One of these deflections, observed at posterior electrode sites (P7/P8), started about 400 ms poststimulus, and was dependent on both memory set-size and the degree of matching between memory-sets and test probes. These suggest that there is a level at which relations among items and degree of memory access are important in visual working memory. Based on these findings the present study investigated representational quality and degree of memory access. It was hypothesized that representational quality could be lowered by competition between stimuli (local suppression), and that degree of memory access be lowered when probes only partially match memory-set stimuli (partial matching). The relative distance (close or far) and similarity (homogeneous or heterogeneous) between memory-set stimuli were varied. ERPs were recorded while participants made old or new responses to single probes preceded by memory-sets (of size 2 or 4). ERL results obtained from 33 participants showed (a) that large ERL effects were found at the P7/P8 sites with a latency of 400-700 ms from probe onset, similar to Shin et al. (2006); (b) that significant ERL activity was observed only for the homogeneous memory-sets presented far apart; and (c) that the heterogeneous memory-sets presented nearby showed significantly smaller ERL activity than set-size 2 memory-sets (representing no-suppression and complete matching). These results support a hybrid of the local suppression and partial matching hypotheses, suggesting that representational quality and degree of memory access can jointly influence visual working memory processing.

keywords
시각 작업 기억, 부호화 관련 편측화, 표상의 질, 기억 접근 정도, 사건 관련 전위, visual working memory, encoding-related lateralization (ERL), representational quality, degree of memory access, event-related potentials (ERPs)

Reference

1.

Allison, T., McCarthy, G., Nobre, A., Puce, A., & Belger, A. (1994). Human extrastriate visual cortex and the perception of faces, words, numbers, and colors. Cerebral Cortex, 4, 544-554.

2.

Allison, T., Puce, A., Spencer, D. D., & McCarthy, G. (1999). Electrophysiological studies of human face perception. I: Potentials generated in occipitotemporal cortex by face and non-face stimuli. Cerebral Cortex, 9, 415-430.

3.

Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short term memory is set both by visual information load and by number of objects. Psychological Science, 15, 106-111.

4.

Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items, regardless of complexity. Psychological Science, 18, 622-628.

5.

Bays, P. M., & Husain, M. (2008). Dynamic shifts of limited working memory resources in human vision. Science, 321, 851-854.

6.

Bahcall, D. O., & Kowler, E. (1999). Attentional interference at small separations. Vision Research, 39, 71-86.

7.

Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138, 487-502.

8.

Brady, T. F., Konkle, T., & Alvarez, G. A. (2011). A review of visual memory capacity: Beyond individual items and toward structured representations. Journal of Vision, 11, 1-34.

9.

Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in visual working memory: Ensemble statistics bias memory for individual items. Psychological Science, 22, 384-392.

10.

Chong, S. C., Jo, S., Park, K. M., Joo, E. Y., Lee, M. -J., Hong, S. C., & Hong, S. B. (2013). Interaction between the electrical stimulation of a face-selective area and the perception of face stimuli. NeuroImage, 77, 70-76.

11.

Epstein, R., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392, 598-601.

12.

Fabiani, M., Gratton, G., & Federmeider, K. (2007). Event-related brain potentials. In J. Cacioppo, L. Tassinary, & G. Berntson (Eds.), Handbook of Psychophysiology (3rd Ed.) (pp. 85-119). New York, NY: Cambridge University Press.

13.

Flowers, D. L., Jones, K., Noble, K., VanMeter, J., Zeffiro, T. A., Wood, F. B., & Eden, G. F. (2004). Attention to single letters activates left extrastriate cortex. NeuroImage, 21, 829- 839.

14.

Folk, C. L., & Egeth, H. (1989). Does the identification of simple features require serial processing? Journal of Experimental Perception and Performance, 5, 583-597.

15.

Gratton, G., Coles, M. G. H., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55, 468-484.

16.

Gratton, G., Coles, M. G. H., Sirevaag, E. J., Eriksen, C. W., & Donchin, E. (1988). Pre- and poststimulus activation of response channels: A psychophysiological analysis. Journal of Experimental Psychology: Human Perception and Performance, 14, 331-344.

17.

Gratton, G. (1998). The controlateral organization of visual memory: A theoretical concept and a research tool. Psychophysiology, 35, 638-647.

18.

Jasper, H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 371-375.

19.

Kanwisher, N., Chun, M. M., McDermott, J., & Ledden, P. J. (1996). Functional imaging of human visual recognition. Cognitive Brain Research, 5, 55-67.

20.

Kastner, S., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science, 282, 108-111.

21.

Kastner, S., De Weerd, P., Pinsk, M. A., Elizondo, M. I., Desimone, R., & Ungerleider, L. G. (2001). Modulation of sensory suppression: Implications for receptive field sizes in the human visual cortex. Journal of Neurophysiology, 86, 1398-1411.

22.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281.

23.

Luria, R., Sessa, P., Gotler, A., Jolicœur, P., & Dell’Acqua, R. (2009). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22, 496-512.

24.

McCarley, J. S., & Mounts, J. R. W. (2007). Localized attentional interference affects object individuation, not feature detection. Perception, 38, 17-32.

25.

Mounts, J. R. W., & Gavett, B. E. (2004). The rold of salience in localiszed attentional interference. Vision Research, 44, 1575-1588.

26.

Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97-113.

27.

Olsson, H., & Poom, L. (2005). Visual memory needs categories. Proceedings of the National Academy of Sciences, U.S.A., 102, 8776-8780.

28.

Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms subserve attention in macaque areas V2 and V4. Journal of Neuroscience, 19, 1736-1753.

29.

Roediger, H. L., III, Weldon, M. S., & Challis, B. H. (1989). Explaining dissociations between implicit and explicit measures of retention: A processing account. In H. L. Roediger, III & F. I. M. Craik (Eds.), Varieties of memory and consciousness: Essays in honor of Endel Tulving (pp.3-41). Hillsdale, NJ: Erlbaum.

30.

Rousselet, G. A., Thorpe, S. J., & Fabre-Thorpe, M. (2004). How parallel is visual processing in the ventral pathways? Trends in Cognitive Sciences, 8, 363-370.

31.

Rugg, M. D., Mark, R. E., Walla, P., Schloerscheidt, A. M., Birch, C. S., & Allan, K. (1998). Dissociation of the neural correlates of implicit and explicit memory. Nature, 392 (9), 595-598.

32.

Rugg, M. D., & Curran, T. (2007). Event-related potentials and recognition memory. Trends in Cognitive Science, 11, 251-257.

33.

Shin, E., Fabiani, M., & Gratton, G. (2004). Evidence of partial response activation in a memory-search task. Cognitive Brain Research, 20, 281-293.

34.

Shin, E., Fabiani, M., & Gratton, G. (2006). Multiple levels of stimulus representation in visual working memory. Journal of Cognitive Neuroscience, 18, 844-858.

35.

Shin, E. (2012). Lateralized readiness potential: On the movement-related potential that uses the contralateral organization of motor control. The Korean Journal of Cognitive and Biological Psychology, 24, 335-355.

36.

Tarkiainen, A., Cornelissen, P. L., & Salmelin, R. (2002). Dynamics of visual feature analysis and object-level processing in face versus letter-string perception. Brain, 125, 1125- 1136.

37.

Treisman, A. M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12, 97-136.

38.

Wheeler, M. E., Peterson, S. E., & Buckner, R. L. (2000). Memory’s echo: Vivid remembering reactivates sensory-specific cortex. Proceedings of the National Academy of Sciences, USA, 97, 11125-11129.

The Korean Journal of Cognitive and Biological Psychology