ISSN : 1226-9654
본 연구는 공간적 주의할당에 근거하는 좌표가 무엇인지를 검증하였다. 망막상의 상대적인 위치에 근거한 공간좌표를 망막위상(retinotopic) 좌표라고 하고, 외부세계의 객관적인 공간위치에 근거한 좌표를 공간위상(spatiotopic) 좌표라고 한다. Golomb, Chun과 Mazer(2008)은 공간적 주의할당에서 이 두 가지 좌표를 비교하는 연구를 수행하여, 시각정보처리 초기에는 망막위상좌표가 주의할당의 근거가 되며 공간위상좌표는 망막위상좌표의 정보가 업데이트 된 후에 사용된다고 제안하였다. 하지만 이러한 해석은 자극이 점 또는 선으로만 이루어진 인공적인 환경에서의 실험결과에 근거한 것으로 일상적인 배경정보가 없었기 때문에 망막위상좌표에 근거한 주의할당이 더 용이한 실험환경이었다. 본 연구에서는 공간위상좌표를 획득할 수 있는 배경을 추가로 제시하면 이를 참조하여 공간적 주의할당이 이루어질 것이라는 가설을 검증하였다. 실험 1에서는 Golomb 등이 사용한 자극을 이용하여 기존결과를 재검증 하였고, 실험 2에서는 실험 1과 동일한 자극에 배경을 추가함으로써 배경을 참조틀로 삼아 공간적 주의할당을 할 수 있도록 구성하였다. 실험 1과 2의 결과를 비교하여 참조배경의 유무에 따른 망막 및 공간위상좌표에서의 공간적 주의할당을 검증하였다. 그 결과 기존 결과와 달리 망막위상좌표에 근거한 공간적 주의할당의 촉진효과가 사라졌으며 이는 기존 연구가 망막위상좌표에 유리한 환경에서 밝혀진 결과이며, 배경이 존재하면 이를 빠르게 참조하여 공간적 주의가 할당될 수 있음을 보여준다.
This research tested the basis of spatial attention deployment. Spatial coordinate based on relative retinal position is called retinotopic coordinate and that based on objective spatial location of outer world is called spatiotopic coordinate. Golomb, Chun, & Mazer (2008) compared the use of these two coordinates in spatial attention allocation and concluded that retinotopic coordinate is the basis of spatial attention allocation in early visual information processing and spatiotopic coordinate is used only after retinotopic coordinate is updated. However, because their experiments used only dots and lines as stimuli in the absence of contextual information (e.g., background), retinotopic coordinate was the only representation readily accessible for spatial attention allocation. In this research, we hypothesized that background providing spatiotopic information will facilitate attention allocation based on the spatiotopic representation. To test this hypothesis, we replicated previous results using the stimuli in Golomb et al. (Expt. 1), and then provided background to test whether background is used as spatiotopic reference frame in spatial attention allocation (Expt. 2). The results of Experiments 1 and 2 are compared to examine spatial attention allocation in retinotopic vs. spatiotopic coordinates depending on presence or absence of background. Contrary to previous findings, in Expt. 2, retinotopic facilitation of attention allocation disappeared, indicating that previous experimental setting was favorable for the use of retinotopic spatial representation and that background can be used as spatiotopic reference frame for spatial attention deployment.
Awh, E., Jonides, J., & Reuter Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology, 24, 780-790.
Baccino, T., Jaschinski, W., & Bussolon, J. (2001). The influence of bright background flicker during different saccade periods on saccadic performance. Vision Research, 41(28), 3909- 3916.
Bisley, J. W., & Goldberg, M. E. (2003). Neuronal activity in the lateral intraparietal area and spatial attention. Science, 299, 81-86.
Brooks, B. A., Impelman, D. M., & Lum, J. T. (1980). luminance on visual sensitivity during saccadic eye movements. Experimental Brain Research, 40(3), 322-329.
Cavanagh, P., Hunt, A. R., Afraz, A., & Rolfs, M. (2010). Visual stability based on remapping of attention pointers. Trends in cognitive sciences, 14(4), 147-153.
Corbetta, M., Akbudak, E., Conturo, T. E., Snyder, A. Z., Ollinger, J. M., Drury, H. A., Linenweber, M. R., Petersen, S. E., Raichle, M. E., Van Essen, D. C., & Shulman, G. L. (1998). A common network of functional areas for attention and eye movements. Neuron, 21, 761-773.
Cornelissen, F. W., Peters, E. M., & Palmer, J. (2002). The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behavior Research Methods, 34(4), 613- 617
Duhamel J. R., Colby C. L., & Goldberg M. E. (1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 90-92.
Duvel, H. (1995). Is saccadic adaptation context-specific? Studies in visual information processing, 6, 177-187.
Eimer, M., Van Velzen, J., Gherri, E., & Press, C. (2007). ERP correlates of shared control mechanisms involved in saccade preparation and in covert attention. Brain research, 1135, 154-166.
Gardner, J. L., Merriam, E. P., Movshon, J. A., & Heeger, D. J. (2009). Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. Journal of neuroscience, 28(15), 3988-3999.
Gersch, T. M., Kowler, E., & Dosher, B. (2004). Dynamic allocation of visual attention during the execution of sequences of saccades. Vision research, 44, 1469-1483.
Golomb, J. D., Chun, M. M., & Mazer, J. A. (2008). The native coordinate system of spatial attention is retinotopic. Journal of neuroscience, 28(42), 10654-10662.
Hoffman, J. E., & Subramaniam, B. (1995). The role of visual attention in saccadic eye movements. Perception & psychophysics, 57, 787- 795.
Honda, H. (1995). Visual mislocalization in moving background and saccadic eye movement conditions. Studies in visual information processing, 6, 201-212.
Irwin, D. E., & Gordon, R. D. (1998). Eye movements, attention and trans-saccadic memory. Visual cognition, 5, 127-155.
Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual review of neuroscience, 23, 315- 341.
Kastner, S., DeSimone, K., Konen, C. S., Szczepanski, S. M., Weiner, K. S., & Schneider, K. A. (2007). Topographic maps in human frontal cortex revealed in memory-guided saccade and spatial working memory tasks. Journal of neurophysiology, 97, 3495-3507.
Kleiner, M., Brainard, D., Pelli, D., Ingling, A., Murray, R., & Broussard, C. (2007). What’s new in Psychtoolbox-3. Perception, 36(14), 1-1.
Kusunoki, M., & Goldberg, M. E. (2003). The time course of perisaccadic receptivefield shifts in the lateral intraparietal area of the monkey. Journal of neurophysiology, 89, 1519-1527.
Land, M. F., & Hayhoe, M. (2001). In what ways do eye movements contribute to everyday activities? Vision research, 41, 3559-3565.
Melcher, D., & Morrone, M. C. (2003). Spatiotopic temporal integration of visual motion across saccadic eye movements. Nature neuroscience, 6(8), 877-811.
Merriam, E. P., Genovese, C. R., & Colby, C. L. (2003). Spatial updating in human parietal cortex. Neuron, 39, 361-373.
Merriam, E. P., Genovese, C. R., & Colby, C. L. (2007). Remapping in human visual cortex. Journal of neurophysiology, 97(2), 1738-1755.
Nakamura, K., & Colby, C. L. (2002). Updating of the visual representation in monkey striate and extrastriate cortex during saccades. Proceedings of the National Academy of Sciences, 99, 4026-4031.
Nobre, A. C., Gitelman, D. R., Dias, E. C., & Mesulam, M. M. (2000). Covert visual spatial orienting and saccades: overlapping neural systems. Neuroimage, 11, 210-216.
Schall, J. D. (2004). On the role of frontal eye field in guiding attention and saccades. Vision research, 44, 1453-1467.
Sommer, M. A., & Wurtz, R. H. (2006). Influence of the thalamus on spatial visual processing in frontal cortex. Nature, 444, 374-377.
Van der Stigchel, S., & Theeuwes, J. (2005). The influence of attending to multiple locations on eye movements. Vision research, 45, 1921-1927.