바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

A Review of Individual Differences in Neural Efficiency Focused on Cognitive Style and Task-Related Features

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2014, v.26 no.3, pp.171-192
https://doi.org/10.22172/cogbio.2014.26.3.003


  • Downloaded
  • Viewed

Abstract

Neural efficiency is a characteristic of the brain tending to process given information with a minimum amount of the neural resources. It has been difficult to integrate the results from the various studies related to neural efficiency since observed patterns of the neural efficiency were different between the studies. These previous studies tried to explain these different patterns based on the variables such as intelligence, gender, age, cognitive style, and so on. The present study reviews the related studies, focusing on the cognitive style and the task-related features. Some of the studies reported that brain regions, showing the neural efficiency, varied depending on the stimulus modalities included in the tasks. Furthermore, the brain regions which were directly engaged in the task-related processes and the other regions showed different activation patterns depending on the task difficulty. We propose the possibility that the individual differences in the patterns of neural efficiency could be explained not only by intelligence, sex, or age, but also by individuals’ preferences on the cognitive styles. In conclusion, this review suggests that it is important to consider the stimulus modalities and task difficulty in order to draw consistent results in a relevant studies, and that the individual differences in the neural efficiency could be explained in terms of cognitive style.

keywords
신경효율성, 인지양식, 과제 자극 양상, 과제 난이도, neural efficiency, cognitive style, stimulus modality, task difficulty

Reference

1.

김선연, 조규락 (2010). 상이한 인지양식이 메타인지에 미치는 영향. 교육정보미디어연구, 16(2), 177-196.

2.

도경수, 황혜란 (2006). 멀티미디어 학습에서 인지 양식과 제시 순서가 파지와 이해에 미치는 영향. 인지과학, 17(3), 231-253.

3.

신경희, 김초복 (2013). 대상, 공간 및 언어 인지양식에 따른 작업기억 과제 수행의 개인차. 한국심리학회지: 인지 및 생물, 25(4), 539-563.

4.

이태연 (2008). 범주학습에서 범주화 방략에 미치는 인지양식의 효과. 한국심리학회지: 인지 및 생물, 20(4), 339-355.

5.

조경자, 한광희 (2002). 멀티미디어 환경에서 인지양식이 학습수행에 미치는 영향. 한국심리학회지: 인지 및 생물, 14(3), 165-185.

6.

Basten, U., Stelzel, C., & Fiebach, C. J. (2011). Trait Anxiety Modulates the Neural Efficiency of Inhibitory Control. Journal of Cognitive Neuroscience, 23(10), 3132-3145.

7.

Basten, U., Stelzel, C., & Fiebach, C. J. (2012). Trait anxiety and the neural efficiency of manipulation in working memory. Cognitive Affective & Behavioral Neuroscience, 12(3), 571- 588.

8.

Basten, U., Stelzel, C., & Fiebach, C. J. (2013). Intelligence is differentially related to neural effort in the task-positive and the task- negative brain network. Intelligence, 41(5), 517-528.

9.

Blajenkova, O., Kozhevnikov, M., & Motes, M. A. (2006). Object-spatial imagery: New self-report imagery questionnaire. Applied Cognitive Psychology, 20(2), 239-263.

10.

Blazhenkova, O., & Kozhevnikov, M. (2009). The new object-spatial-verbal cognitive style model: Theory and measurement. Applied Cognitive Psychology, 23(5), 638-663.

11.

Boivin, M. J., Giordani, B., Berent, S., Amato, D. A., Lehtinen, S., Koeppe, R. A., et al. (1992). Verbal fluency and positron emission tomographic mapping of regional cerebral glucose metabolism. Cortex, 28(2), 231-239.

12.

Courtney, S. M., Ungerleider, L. G., Keil, K., & Haxby, J. V. (1996). Object and spatial visual working memory activate separate neural systems in human cortex. Cerebral Cortex, 6(1), 39-49.

13.

Doppelmayr, M., Klimesch, W., Sauseng, P., Hodlmoser, K., Stadler, W., & Hanslmayr, S. (2005). Intelligence related differences in EEG- bandpower. Neuroscience Letters, 381(3), 309- 313.

14.

Doppelmayr, M., Klimesch, W., Stadler, W., Pollhuber, D., & Heine, C. (2002). EEG alpha power and intelligence. Intelligence, 30(3), 289-302.

15.

Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., . . . Emslie, H. (2000). A neural basis for general intelligence. Science, 289(5478), 457-460.

16.

Dunst, B., Benedek, M., Bergner, S., Athenstaedt, U., & Neubauer, A. (2013). Sex differences in neural efficiency: Are they due to the stereotype threat effect? Personality and Individual Differences, 55(7), 744-749.

17.

Gerlic, I., & Jausovec, N. (1999). Multimedia: Differences in cognitive processes observed with EEG. Educational Technology Research and Development, 47(3), 5-14.

18.

Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316-322.

19.

Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2005). The neuroanatomy of general intelligence: sex matters. Neuroimage, 25(1), 320-327.

20.

Haier, R. J., Siegel, B. V., Jr., MacLachlan, A., Soderling, E., Lottenberg, S., & Buchsbaum, M. S. (1992). Regional glucose metabolic changes after learning a complex visuospatial/motor task: a positron emission tomographic study. Brain Research, 570(1), 134-143.

21.

Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., . . . Buchsbaum, M. S. (1988). Cortical glucose metabolic rate correlates of abstract reasoning and attention studied with positron emission tomography. Intelligence, 12(2), 199-217.

22.

Hsu, N. S., Kraemer, D. J., Oliver, R. T., Schlichting, M. L., & Thompson-Schill, S. L. (2011). Color, context, and cognitive style: variations in color knowledge retrieval as a function of task and subject variables. The Journal of Neuroscience, 23(9), 2544-2557.

23.

Hyde, J. S., & Linn, M. C. (1988). Gender differences in verbal ability: A meta-analysis. Psychological Bulletin, 104(1), 53.

24.

Jacobs, L. F., Gaulin, S. J., Sherry, D. F., & Hoffman, G. E. (1990). Evolution of spatial cognition: sex-specific patterns of spatial behavior predict hippocampal size. Proceedings of the National Academy of Sciences of the United States of America, 87(16), 6349-6352.

25.

Jausovec, N. (1998). Are gifted individuals less chaotic thinkers? Personality and Individual Differences, 25(2), 253-267.

26.

Jausovec, N. (2012). Sex differences in event-related potential components during the solution of complex mental rotation tasks. Neuroreport, 23(6), 360-363.

27.

Jausovec, N., & Jausovec, K. (2001). Differences in EEG current density related to intelligence. Cognitive Brain Research, 12(1), 55-60.

28.

Jausovec, N., & Jausovec, K. (2004). Differences in induced brain activity during the performance of learning and working-memory tasks related to intelligence. Brain Cognition, 54(1), 65-74.

29.

Jenkins, L., Myerson, J., Joerding, J. A., & Hale, S. (2000). Converging evidence that visuospatial cognition is more age-sensitive than verbal cognition. Psychology and Aging, 15(1), 157-175.

30.

Kirby, J. R., Moore, P. J., & Schofield, N. J. (1988). Verbal and visual learning styles. Contemporary Educational Psychology, 13, 169- 184.

31.

Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research Reviews, 29(2), 169-195.

32.

Kozhevnikov, M. (2007). Cognitive styles in the context of modern psychology: toward an integrated framework of cognitive style. Psychological Bulletin, 133(3), 464-481.

33.

Kozhevnikov, M., Hegarty, M., & Mayer, R. E. (2002). Revising the visualizer-verbalizer dimension: Evidence for two types of visualizers. Cognition and Instruction, 20(1), 47- 77.

34.

Kozhevnikov, M., Kosslyn, S., & Shephard, J. (2005). Spatial versus object visualizers: a new characterization of visual cognitive style. Memory & Cognition, 33(4), 710-726.

35.

Kraemer, D. J., Rosenberg, L. M., & Thompson-Schill, S. L. (2009). The neural correlates of visual and verbal cognitive styles. The Journal of Neuroscience, 29(12), 3792-3798.

36.

Lamm, C., Bauer, H., Vitouch, O., & Gstattner, R. (1999). Differences in the ability to process a visuo-spatial task are reflected in event-related slow cortical potentials of human subjects. Neuroscience Letters, 269(3), 137-140.

37.

Larson, G. E., Haier, R. J., LaCasse, L., & Hazen, K. (1995). Evaluation of a “mental effort” hypothesis for correlations between cortical metabolism and intelligence. Intelligence, 21(3), 267-278.

38.

Lee, K. H., Choi, Y. Y., Gray, J. R., Cho, S. H., Chae, J.-H., Lee, S., & Kim, K. (2006). Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex. Neuroimage, 29(2), 578-586.

39.

Li, S., Gong, D., Jia, S., Zhang, W., & Ma, Y. (2011). Object and spatial visualizers have different object-processing patterns: behavioral and ERP evidence. Neuroreport, 22(17), 860- 864.

40.

Mann, V. A., Sasanuma, S., Sakuma, N., & Masaki, S. (1990). Sex differences in cognitive abilities: a cross-cultural perspective. Neuropsychologia, 28(10), 1063-1077.

41.

Mayer, R. E., & Massa, L. J. (2003). Three facets of visual and verbal learners: Cognitive ability, cognitive style, and learning preference. Journal of Educational Psychology, 95(4), 833-846.

42.

Messick, S. (1976). Personality consistencies in cognition and creativity. Individuality in Learning, 4, 4-23.

43.

Miyake, A., Friedman, N. P., Rettinger, D. A., Shah, P., & Hegarty, P. (2001). How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis. Journal of Experimental Psychology-General, 130(4), 621-640.

44.

Motes, M. A., Malach, R., & Kozhevnikov, M. (2008). Object-processing neural efficiency differentiates object from spatial visualizers. Neuroreport, 19(17), 1727-1731.

45.

Neubauer, A., & Fink, A. (2009). Intelligence and neural efficiency. Neuroscience & Biobehavioral Reviews, 33(7), 1004-1023.

46.

Neubauer, A., Fink, A., & Schrausser, D. G. (2002). Intelligence and neural efficiency: The influence of task content and sex on the brain-IQ relationship. Intelligence, 30(6), 515- 536.

47.

Neubauer, A., Freudenthaler, H. H., & Pfurtscheller, G. (1995). Intelligence and Spatiotemporal Patterns of Event-Related Desynchronization (ERD). Intelligence, 20(3), 249-266.

48.

Neubauer, A., Grabner, R. H., Fink, A., & Neuper, C. (2005). Intelligence and neural efficiency: further evidence of the influence of task content and sex on the brain-IQ relationship. Cognitive Brain Research, 25(1), 217-225.

49.

Neubauer, A., Sange, G., & Pfurtscheller, G. (1999). Psychometric intelligence and event- related desynchronization during performance of a letter matching task. Handbook of Electroencephalography and Clinical Neurophysiology, 6, 219-231.

50.

O'Connor, D. B., Archer, J., Hair, W. M., & Wu, F. C. (2001). Activational effects of testosterone on cognitive function in men. Neuropsychologia, 39(13), 1385-1394.

51.

Papousek, I., & Schulter, G. (2004). Manipulation of frontal brain asymmetry by cognitive tasks. Brain Cognition, 54(1), 43-51.

52.

Parks, R. W., Loewenstein, D. A., Dodrill, K. L., Barker, W. W., Yoshii, F., Chang, J. Y., et al (1988). Cerebral metabolic effects of a verbal fluency test: a PET scan study. Journal of Clinical and Experimental Neuropsychology, 10(5), 565-575.

53.

Pavio, A. (1971). Imagery and verbal processes. Oxford: Holt: Rinehart & Winston.

54.

Posner, M. I., & Mitchell, R. F. (1967). Chronometric analysis of classification. Psychological Review, 74(5), 392-409.

55.

Raven, J. C., & Court, J. H. (1998). Raven's progressive matrices and vocabulary scales: Oxford Psychologists Press.

56.

Reichle, E. D., Carpenter, P. A., & Just, M. A. (2000). The neural bases of strategy and skill in sentence-picture verification. Cognitive Psychology, 40(4), 261-295.

57.

Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe, R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. The Journal of Neuroscience, 12(1), 174-187.

58.

Richardson, A. (1977). Verbalizer-visualizer: a cognitive style demension. Journal of Mental Imagery, 1(1), 109-125.

59.

Rypma, B. (2006). Factors controlling neural activity during delayed-response task performance: testing a memory organization hypothesis of prefrontal function. Neuroscience, 139(1), 223-235.

60.

Rypma, B., Berger, J. S., Genova, H. M., Rebbechi, D., & D'Esposito, M. (2005). Dissociating age-related changes in cognitive strategy and neural efficiency using event- related fMRI. Cortex, 41(4), 582-594.

61.

Rypma, B., Berger, J. S., Prabhakaran, V., Bly, B. M., Kimberg, D. Y., Biswal, B. B., & D'Esposito, M. (2006). Neural correlates of cognitive efficiency. Neuroimage, 33(3), 969- 979.

62.

Shaw, R. M., Helmes, E., & Mitchell, D. (2006). Age-related change in visual, spatial and verbal memory. Australasian Journal on Ageing, 25(1), 14-19.

63.

Silverman, I., Kastuk, D., Choi, J., & Phillips, K. (1999). Testosterone levels and spatial ability in men. Psychoneuroendocrinology, 24(8), 813-822.

64.

Verhaeghen, P., Cerella, J., & Basak, C. (2006). Aging, task complexity, and efficiency modes: the influence of working memory involvement on age differences in response times for verbal and visuospatial tasks. Aging, Neuropsychology, and Cognition, 13(2), 254-280.

65.

Verhaeghen, P., Cerella, J., Semenec, S. C., Leo, M. A., Bopp, K. L., & Steitz, D. W. (2002). Cognitive efficiency modes in old age: performance on sequential and coordinative verbal and visuospatial tasks. Psychology and Aging, 17(4), 558-570.

66.

Vitouch, O., Bauer, H., Gittler, G., Leodolter, M., & Leodolter, U. (1997). Cortical activity of good and poor spatial test performers during spatial and verbal processing studied with Slow Potential Topography. International Journal of Psychophysiology, 27(3), 183-199.

The Korean Journal of Cognitive and Biological Psychology