바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

디폴트 모드 연결망의 기억 부호화 및 공고화 신호 분석

Memory Encoding and Consolidation in the Default Mode Networks

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2014, v.26 no.4, pp.343-367
https://doi.org/10.22172/cogbio.2014.26.4.007
탁경진 (연세대학교)
이홍미 (New York University)
이도준 (연세대학교)
  • 다운로드 수
  • 조회수

초록

본 연구는 후속 기억 패러다임과 휴지기 기능적 연결성 분석을 통해 기억 생성에 관여하는 디폴트 모드 연결망의 신호를 분석하였다. 참가자들은 기능적 자기 공명 영상(functional magnetic resonance imaging, fMRI)을 촬영하는 동안 다수의 장면과 얼굴 사진들을 학습하였고 뇌 영상 촬영이 종료된 후에는 재인 검사를 수행하였다. 디폴트 모드 연결망(default mode networks, DMN)을 정의하고 휴지기 기능적 연결성의 변화를 추적하기 위해 학습 단계 전후에는 휴지기 영상을 촬영하였다. 재인 검사 결과를 바탕으로 학습 단계의 기능 영상을 사진이 기억된 시행과 망각된 시행으로 분류하여 비교하였다. 이를 통해 두 가지 주요 결과를 얻었다. 첫째, DMN의 하위 영역들은 나중에 기억된 자극보다 망각된 자극을 학습하는 동안 더 많이 활성화되었다. 특히 이러한 후속 망각(subsequent forgetting, SF) 효과는 우반구 각회(angular gyrus)에서 가장 두드러지게 나타났다. 둘째, 학습후 휴지기 영상에서 해마와 해마방 장소 영역의 기능적 연결성이 증가한 참가자일수록 후속 재인 검사에서 장면 사진을 더 정확하게 기억하였다. 본 연구는 디폴트 모드 연결망의 기억 부호화 및 공고화 기능을 하위 영역별로 상세하게 밝혔다. 이러한 결과는 기억의 생성 과정을 이해하기 위해 연결망 수준의 접근이 필요하다는 점을 시사한다.

keywords
부호화, 공고화, 디폴트 모드 연결망, 휴지기 기능적 연결성, 후속 기억 패러다임, encoding, consolidation, default mode network, resting-state functional connectivity, subsequent memory paradigm

Abstract

The current study analyzed the neural signals from the default mode networks (DMN) using the subsequent memory paradigm and a resting-state functional connectivity (rsFC) analysis. Participants learned a number of scenes and faces during functional magnetic resonance imaging (fMRI) and later performed a recognition test. To define the DMN and track the changes in rsFC, resting-state scans were acquired before and after the learning phase. Based on subsequent recognition performance, trials in the learning phase were categorized into either subsequently remembered or subsequently forgotten trials. Here are two main findings: First, DMN subregions showed greater activation for subsequently forgotten than remembered trials. Such subsequent forgetting (SF) effects were most reliable in the right angular gyrus. Second, greater functional connectivity between the hippocampus and the parahippocampal place area (PPA) during the post-learning resting scan predicted better memory for the scenes in the subsequent recognition test. These findings provide information about memory encoding and consolidation functions in the DMN and support the necessity of network-level approaches to understand human memory.

keywords
부호화, 공고화, 디폴트 모드 연결망, 휴지기 기능적 연결성, 후속 기억 패러다임, encoding, consolidation, default mode network, resting-state functional connectivity, subsequent memory paradigm

참고문헌

1.

신맹식 (2010). 시스템 응고화 이론에 의한 내측 측두엽 손상 환자들의 기억 인출 또는 실패에 대한 역동적 해석. 한국심리학회지: 인지 및 생물, 22(4), 549-571.

2.

정주연, 민수정, 한상훈, 이도준 (2012). 장기 기억 과제에서 연합 항목의 범주 관계가 해마 활동에 미치는 영향. 한국심리학회지: 인지 및 생물, 24(4), 453-470.

3.

Addis, D. R., Wong, A. T., & Schacter, D. L. (2008). Age-related changes in the episodic simulation of future events. Psychological Science, 19(1), 33-41.

4.

Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain's default network. Neuron, 65(4), 550-562.

5.

Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., & Buckner, R. L. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924-935.

6.

Anticevic, A., Cole, M. W., Murray, J. D., Corlett, P. R., Wang, X. J., & Krystal, J. H. (2012). The role of default network deactivation in cognition and disease. Trends in Cognitive Sciences, 16(12), 584-592.

7.

Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17(1), 353-362.

8.

Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10(4), 433-436.

9.

Brewer, J. B., Zhao, Z., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (1998). Making memories: brain activity that predicts how well visual experience will be remembered. Science, 281(5380), 1185-1187.

10.

Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 49-57.

11.

Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2008). The parietal cortex and episodic memory: an attentional account. Nature Reviews Neuroscience, 9(8), 613-625.

12.

Chalfonte, B. L., & Johnson, M. K. (1996). Feature memory and binding in young and older adults. Memory and Cognition, 24(4), 403-416.

13.

Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8719-8724.

14.

Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. Neuroimage, 37(1), 343-360.

15.

Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201-215.

16.

Cordes, D., Haughton, V. M., Arfanakis, K., Carew, J. D., Turski, P. A., Moritz, C. H., Quigley, M. A., & Meyerand, M. E. (2001). Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data. American Journal of Neuroradiology, 22(7), 1326-1333.

17.

Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162-173.

18.

Daselaar, S. M., Prince, S. E., & Cabeza, R. (2004). When less means more: deactivations during encoding that predict subsequent memory. Neuroimage, 23(3), 921-927.

19.

de Chastelaine, M., Mattson, J. T., Wang, T. H., Donley, B. E., & Rugg, M. D. (in press). Sensitivity of negative subsequent memory and task-negative effects to age and associative memory performance. Brain Research.

20.

de Chastelaine, M., & Rugg, M. D. (2014). The relationship between task-related and subsequent memory effects. Human Brain Mapping, 35(8), 3687-3700.

21.

Diedrichsen, J., & Shadmehr, R. (2005). Detecting and adjusting for artifacts in fMRI time series data. Neuroimage, 27(3), 624-634.

22.

Dilks, D. D., Julian, J. B., Paunov, A. M., & Kanwisher, N. (2013). The occipital place area is causally and selectively involved in scene perception. Journal of Neuroscience, 33(4), 1331-1336.

23.

Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., Fox, M. D., Snyder, A. Z., Vincent, J. L., Raichle, M. E., Schlaggar, B. L., & Petersen, S. E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11073-11078.

24.

Duverne, S., Motamedinia, S., & Rugg, M. D. (2009). The relationship between aging, performance, and the neural correlates of successful memory encoding. Cerebral Cortex, 19(3), 733-744.

25.

Eichenbaum, H., Yonelinas, A. P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123-152.

26.

Epstein, R. A., & Kanwisher, N. (1998). A cortical representation of the local visual environment. Nature, 392(6676), 598-601.

27.

Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673-9678.

28.

Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 3270-3283.

29.

Geng, J. J., & Vossel, S. (2013). Re-evaluating the role of TPJ in attentional control: contextual updating? Neuroscience and Biobehavioral Reviews, 37(10 Pt 2), 2608-2620.

30.

Hoffman, K. L., & McNaughton, B. L. (2002). Coordinated reactivation of distributed memory traces in primate neocortex. Science, 297(5589), 2070-2073.

31.

Jackson, O., 3rd, & Schacter, D. L. (2004). Encoding activity in anterior medial temporal lobe supports subsequent associative recognition. Neuroimage, 21(1), 456-462.

32.

Jung-Beeman, M. (2005). Bilateral brain processes for comprehending natural language. Trends in Cognitive Sciences, 9(11), 512-518.

33.

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17(11), 4302-4311.

34.

Kim, H. (2011). Neural activity that predicts subsequent memory and forgetting: a meta-analysis of 74 fMRI studies. Neuroimage, 54(3), 2446-2461.

35.

Kriegeskorte, N., Mur, M., & Bandettini, P. (2008). Representational similarity analysis - connecting the branches of systems neuroscience. Frontiers in Systems Neuroscience, 2, 4.

36.

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12(5), 535-540.

37.

Maillet, D., & Rajah, M. N. (2014). Dissociable roles of default-mode regions during episodic encoding. Neuroimage, 89, 244-255.

38.

Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: the default network and stimulus-independent thought. Science, 315(5810), 393-395.

39.

Mattson, J. T., Wang, T. H., de Chastelaine, M., & Rugg, M. D. (2014). Effects of age on negative subsequent memory effects associated with the encoding of item and item-context information. Cerebral Cortex, 24(12), 3322- 3333.

40.

Miller, E. K. (2000). The prefrontal cortex and cognitive control. Nature Reviews Neuroscience, 1(1), 59-65.

41.

Miller, S. L., Celone, K., DePeau, K., Diamond, E., Dickerson, B. C., Rentz, D., Pihlajamaki, M., & Sperling, R. A. (2008). Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Sciences of the United States of America, 105(6), 2181-2186.

42.

Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitivecontrol network subserving diverse executive functions. Cognitive Affective & Behavioral Neuroscience, 12(2), 241-268.

43.

O'Reilly, R. C., & Rudy, J. W. (2001). Conjunctive representations in learning and memory: principles of cortical and hippocampal function. Psychological Review, 108(2), 311-345.

44.

Otten, L. J., & Rugg, M. D. (2001). When more means less: neural activity related to unsuccessful memory encoding. Current Biology, 11(19), 1528-1530.

45.

Paller, K. A., & Wagner, A. D. (2002). Observing the transformation of experience into memory. Trends in Cognitive Sciences, 6(2), 93-102.

46.

Peigneux, P., Orban, P., Balteau, E., Degueldre, C., Luxen, A., Laureys, S., & Maquet, P. (2006). Offline persistence of memory-related cerebral activity during active wakefulness. PLoS Biology, 4(4), e100.

47.

Penny, W. D., & Holmes, A. (2004). Random-effects analysis. In W. D. Penny, A. Holmes & K. J. Friston (Eds.), Human brain function (pp. 843-850). San Diego: Elsevier.

48.

Pitcher, D., Walsh, V., Yovel, G., & Duchaine, B. (2007). TMS evidence for the involvement of the right occipital face area in early face processing. Current Biology, 17(18), 1568-1573.

49.

Prins, N., & Kingdom, F. A. A. (2009). Palamedes: Matlab routines for analyzing psychophysical data., from http://www.palamedestoolbox.org

50.

Qin, Y. L., McNaughton, B. L., Skaggs, W. E., & Barnes, C. A. (1997). Memory reprocessing in corticocortical and hippocampocortical neuronal ensembles. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 352(1360), 1525-1533.

51.

Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676-682.

52.

Shrager, Y., Kirwan, C. B., & Squire, L. R. (2008). Activity in both hippocampus and perirhinal cortex predicts the memory strength of subsequently remembered information. Neuron, 59(4), 547-553.

53.

Spreng, R. N., Mar, R. A., & Kim, A. S. (2009). The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. Journal of Cognitive Neuroscience, 21(3), 489-510.

54.

Squire, L. R. (1992). Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychological Review, 99(2), 195-231.

55.

Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569-12574.

56.

Staresina, B. P., & Davachi, L. (2009). Mind the gap: binding experiences across space and time in the human hippocampus. Neuron, 63(2), 267-276.

57.

Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron, 65(2), 280-290.

58.

Turk-Browne, N. B., Yi, D.-J., & Chun, M. M. (2006). Linking implicit and explicit memory: common encoding factors and shared representations. Neuron, 49(6), 917-927.

59.

Uddin, L. Q., Supekar, K., Amin, H., Rykhlevskaia, E., Nguyen, D. A., Greicius, M. D., & Menon, V. (2010). Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cerebral Cortex, 20(11), 2636-2646.

60.

Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic encoding: insights from fMRI subsequent memory effects and dual-attention theory. Neurobiology of Learning and Memory, 91(2), 139-154.

61.

Vilberg, K. L., & Davachi, L. (2013). Perirhinal-hippocampal connectivity during reactivation is a marker for object-based memory consolidation. Neuron, 79(6), 1232-1242.

62.

Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Puzzlingly High Correlations in fMRI Studies of Emotion, Personality, and Social Cognition. Perspectives on Psychological Science, 4(3), 274-290.

63.

Wagner, A. D., Maril, A., & Schacter, D. L. (2000). Interactions between forms of memory: when priming hinders new episodic learning. Journal of Cognitive Neuroscience, 12, Suppl 2, 52-60.

64.

Wagner, A. D., Schacter, D. L., Rotte, M., Koutstaal, W., Maril, A., Dale, A. M., Rosen, B. R., & Buckner, R. L. (1998). Building memories: remembering and forgetting of verbal experiences as predicted by brain activity. Science, 281(5380), 1188-1191.

65.

Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 49-76.

66.

Wilson, M. A., & McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories during sleep. Science, 265(5172), 676-679.

한국심리학회지: 인지 및 생물