바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

표적에 대한 기억 부담이 시각탐색의 초점주의 집중에 미치는 영향

The Effect of Target Memory Load on Attentional Focusing in Visual Search

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2016, v.28 no.3, pp.563-584
https://doi.org/10.22172/cogbio.2016.28.3.009
김혜윤 (중앙대학교)
현주석 (중앙대학교)

초록

시각탐색 표적에 대한 기억 부담이 탐색 수행에 미치는 영향력을 살펴본 연구는 그다지 흔치 않다. 본 연구는 시각탐색 과정에서 초점주의 집중을 반영하는 사건관련전위인 P3 성분을 측정해 표적에 대한 항목 단위 혹은 세부특징 단위의 시각작업기억 부담이 탐색 수행에 미치는 영향을 관찰하였다. 이를 위해 참가자는 표적 단서에 해당되는 두 개의 색상방위막대를 기억하고 뒤이어 출현한 네 색상 막대로 구성된 탐색 화면 내에서 표적의 유무를 판단해 보고하였다. 두 표적 단서막대는 색상 혹은 방위가 서로 동일하거나 달랐으므로 항목개수 차원의 표적에 대한 기억 부담은 하나 혹은 두 항목이었으나 세부특징개수 차원의 기억부담은 하나에서 네 세부특징까지 증감한 것으로 간주되었다. 측정된 P3 성분을 항목 및 세부특징 차원의 기억부담 증감 여부에 걸쳐 비교한 결과 항목 개수 차원의 기억 부담 증가에 따른 진폭 증가만이 확인되었으며 세부특징 개수 차원의 기억 부담 증가에 따른 진폭 증가는 분명하지 않았다. 이는 탐색표적에 대한 기억 부담 증가는 탐색 과정에서 요구되는 초점 주의 집중을 방해하며 이 때 탐색 수행을 방해하는 기억부담의 정도는 표적들의 개별 세부특징이 아닌 항목 개수 단위를 토대로 증감할 가능성을 시사한다.

keywords
시각탐색, 초점주의, P3, 시각작업기억, 기억부담, Visual search, focused attention, P3, Visual working memory(VWM), Memory load

Abstract

Few studies have examined the influence of target memory load on focusing attention during visual search. The present study examined the effect of VWM load imposed according either to the number of potential target items or to the number of their features by measuring P3 component supposedly reflecting the intensity of focused attention during visual search. In each trial, participants reported presence or absence of a target on a search array after memorizing two colored orientation bars that were provided as target-informative cues ahead of the search array. Across the trials, either the orientations or the colors of the bars, or both were manipulated to be the same or different, and thus the memory load from the target-informative cues in each trial was assumed to increase from one to two items according to the number of cue items whereas one to four features according to the total number of features on the cue items. When compared between these two alternative assumptions, the increase in P3 amplitude was better explained according to the item-load than the feature-load assumption. The results indicate that increasing memory load for potential search targets can impair focusing of attention during visual search where the degree of memory load varies according to the number of potential target items rather than the total number of features in the targets.

keywords
시각탐색, 초점주의, P3, 시각작업기억, 기억부담, Visual search, focused attention, P3, Visual working memory(VWM), Memory load

참고문헌

1.

Allon, A. S., Balaban, H., & Luria, R. (2014). How low can you go? Changing the resolution of novel complex objects in visual working memory according to task demands. Frontiers in Psychology, 5, 265.

2.

Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106-111.

3.

Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622-628.

4.

Awh, E., Vogel, E., & Oh, S. -H. (2006). Interactions between attention and working memory. Neuroscience, 139(1), 201-208.

5.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 433-436.

6.

Bundesen, C. (1990). A theory of visual attention. Psychological Review, 97(4), 523.

7.

Cowan, N. (2001). Metatheory of storage capacity limits. Behavioral and Brain Sciences, 24(01), 154-176.

8.

Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9-21.

9.

Duncan, J., & Humphreys, G. W. (1989). Visual search and stimulus similarity. Psychological Review, 96(3), 433.

10.

Forster, S., & Lavie, N. (2007). High perceptual load makes everybody equal eliminating individual differences in distractibility with load. Psychological Science, 18(5), 377-381.

11.

Han, S. H., & Kim, M. S. (2004). Visual search does not remain efficient when executive working memory is working. Psychological Science, 15(9), 623-628.

12.

Hoffman, J. E., Simons, R. F., & Houck, M. R. (1983). Event Related Potentials During Controlled and Automatic Target Detection. Psychophysiology, 20(6), 625-632.

13.

Horowitz, T. S., & Wolfe, J. M. (1998). Visual search has no memory. Nature, 394(6693), 575-577.

14.

Hyun, J., Woodman, G. F., Vogel, E. K., Hollingworth, A., & Luck, S. J. (2009). The comparison of visual working memory representations with perceptual inputs. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1140-1160.

15.

Johnson, R. (1988). The amplitude of the P300component of the event-related potential:Review and synthesis. Advances in Psychophysiology, 3, 69-137.

16.

Johnson, J. S., Hollingworth, A., & Luck, S. J. (2008). The role of attention in the maintenance of feature bindings in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 34(1), 41-55.

17.

Kok, A. (1997). Event-related-potential (ERP)reflections of mental resources: a review and synthesis. Biological Psychology, 45(1), 19-56.

18.

Kok, A. (2001). On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology, 38(3), 557-577.

19.

Kramer, A., Schneider, W., Fisk, A., & Donchin, E. (1986). The Effects of Practice and Task Structure on Components of the Event Related Brain Potential. Psychophysiology, 23(1), 33-47.

20.

Kramer, A. F., & Strayer, D. L. (1988). Assessing the development of automatic processing: an application of dual-task and event-related brain potential methodologies. Biological Psychology, 26(1), 231-267.

21.

Lavie, N. (2005). Distracted and confused?:Selective attention under load. Trends in Cognitive Sciences, 9(2), 75-82.

22.

Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB:an open-source toolbox for the analysis of event-related potentials. Frontiers in Human Neuroscience, 8, 213.

23.

Luck, S. J. (2005). Ten simple rules for designing ERP experiments. In T. C. Handy (Ed.), Event-related potentials: A methods handbook (pp.17-32), Cambridge: MIT Press.

24.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279-281.

25.

Luria, R., Sessa, P., Gotler, A., Jolicoeur, P., & Dell'Acqua, R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22(3), 496-512.

26.

Luria, R., & Vogel, E. K. (2011). Shape and color conjunction stimuli are represented as bound objects in visual working memory. Neuropsychologia, 49(6), 1632-1639.

27.

Magnussen, S., Greenlee, M. W., & Thomas, J. P. (1996). Parrel processing in visual short-term memory. Journal of Experimental Psychology:Human Perception and Performance, 22(1), 202-212.

28.

Nothdurft, H. C. (1993). The role of features in preattentive vision: Comparison of orientation, motion and color cues. Vision Research, 33(14), 1937-1958.

29.

Oh, S. H., & Kim, M. S. (2004). The role of spatial working memory in visual search efficiency. Psychonomic Bulletin & Review, 11(2), 275-281.

30.

Olson, I. R., & Jiang, Y. (2002). Is visual short-term memory object based? Rejection of the “strong-object” hypothesis. Perception &Psychophysics, 64(7), 1055-1067.

31.

Peterson, M. S., Kramer, A. F., Wang, R. F., Irwin, D. E., & McCarley, J. S. (2001). Visual search has memory. Psychological Science, 12(4), 287-292.

32.

Polich, J. (2007). Updating P300: an integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128-2148.

33.

Pratt, N., Willoughby, A., & Swick, D. (2011). Effects of working memory load on visual selective attention: behavioral and electrophysiological evidence. Frontiers in Human Neuroscience, 5, 57.

34.

Soto, D., Heinke, D., Humphreys, G. W., & Blanco, M. J. (2005). Early, involuntary top-down guidance of attention from working memory. Journal of Experimental Psychology:Human Perception and Performance, 31 (2), 248-261.

35.

Soto, D., Hodsoll, J., Rotshtein, P., & Humphreys, G. W. (2008). Automatic guidance of attention from working memory. Trends in Cognitive Sciences, 12(9), 342-348.

36.

Sternberg, S. (1969). Memory-scanning: Mental processes revealed by reaction-time experiments. American Scientist, 57(4), 421-457.

37.

Stevanovski, B., & Jolicoeur, P. (2011). Consolidation of multifeature items in visual working memory: Central capacity requirements for visual consolidation. Attention, Perception, &Psychophysics, 73(4), 1108-1119.

38.

Treisman, A. (1986). Features and objects in visual processing. Scientific American, 255(5), 114-125.

39.

Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. The Quarterly Journal of Experimental Psychology, 40(2), 201-237.

40.

Treisman, A. M., & Gelade, G. (1980). A featureintegration theory of attention. Cognitive Psychology, 12(1), 97-136.

41.

Vickery, T. J., King, L.-W., & Jiang, Y. (2005). Setting up the target template in visual search. Journal of Vision, 5(1), 8.

42.

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428(6984), 748-751.

43.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27(1), 92-114.

44.

Watter, S., Geffen, G. M., & Geffen, L. B. (2001). The n-back as a dual-task: P300morphology under divided attention. Psychophysiology, 38(06), 998-1003.

45.

Wijers, A. A., Mulder, G., Okita, T., & Mulder, L. J. (1989). Event Related Potentials During Memory Search and Selective Attention to Letter Size and Conjunctions of Letter Size and Color. Psychophysiology, 26(5), 529-547.

46.

Wijers, A. A., Otten, L. J., Feenstra, S., Mulder, G., & Mulder, L. J. (1989). Brain potentials during selective attention, memory search, and mental rotation. Psychophysiology, 26(4), 452-467.

47.

Wolfe, J. M. (1994). Guided search 2.0 a revised model of visual search. Psychonomic Bulletin &Review, 1(2), 202-238.

48.

Wolfe, J. M., Cave, K. R., & Franzel, S. L. (1989). Guided search: an alternative to the feature integration model for visual search. Journal of Experimental Psychology: Human Perception and Performance, 15(3), 419.

49.

Woodman, G. F., & Arita, J. T. (2011). Direct electrophysiological measurement of attentional templates in visual working memory. Psychological Science, 22(2), 212-215.

50.

Woodman, G. F., & Luck, S. J. (1999). Electrophysiological measurement of rapid shifts of attention during visual search. Nature, 400(6747), 867-869.

51.

Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin &Review, 11(2), 269-274.

52.

Woodman, G. F., & Vogel, E. K. (2008). Selective storage and maintenance of an object’s features in visual working memory. Psychonomic Bulletin & Review, 15(1), 223-229.

53.

Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12(3), 219-224.

54.

Ye, C., Zhang, L., Liu, T., Li, H., & Liu, Q. (2014). Visual working memory capacity for color is independent of representation resolution. PLoS ONE, 9(3), e91681.

55.

Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453(7192), 233-235.

한국심리학회지: 인지 및 생물