바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-9654
  • E-ISSN2733-466X
  • KCI

수직선추정과제에서 사용되는 기준점 책략 검증

Verifying use of reference points in the number line estimation task

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2016, v.28 no.4, pp.653-673
https://doi.org/10.22172/cogbio.2016.28.4.003
박찬흠 (광운대학교 산업심리학과)
이형철 (광운대학교)
김신우 (광운대학교)

초록

수직선추정과제는 수개념의 공간적 표상을 검증하기 위해 광범위하게 사용되어 왔다. 하지만, 수직선추정과제에서 참가자들이 몇 개의 기준점을 근거로 반응한다는 파워모형의 주장은 수직선추정과제의 결과가 인지적 전략에 의해 왜곡될 가능성이 있다는 것을 시사한다. 본 연구에서는 수직선추정과제에서 참가자들의 반응패턴인 내적수직선의 형태가 기준점 사용으로 인해 영향을 받는지를 검증하였다. 특히 일반 성인의 경우 내적수직선의 형태가 강한 직선경향성을 보인다는 점에 착안하여, 성인 참가자들이 추정해야하는 위치를 기준점 및 그와 미세한 차이를 가지는 위치들로 제시하여 직선경향성에 변화가 발생하는지 관찰하였다. 실험결과 중앙 기준점에서는 직선경향성이 발견되었지만 나머지 기준점들에서는 직선경향성이 약화되는 것을 관찰하였다. 특히 각 기준점으로부터 가까울수록 왜곡이 심화되는 것으로 나타났는데, 이는 수직선추정과제에서 기준점 책략이 사용되며 특히 중앙기준점이 중요한 역할을 담당한다는 것을 보여준다. 또한 중앙기준점의 왼쪽과 오른쪽에 위치한 기준점들에서 각각 과소 및 과대추정을 보이는 양극화 현상이 나타났다. 추가실험 결과, 선분의 길이가 길 때 양극화 현상이 강해짐을 확인하였으며, 이는 선분의 길이 역시 수직선추정과제에 중요한 영향을 미친다는 것을 보여준다. 이 결과들은 수직선추정과제에 다양한 지각적, 인지적 요인이 개입될 수 있으므로 결과해석에 각별한 주의가 필요하다는 것을 시사한다.

keywords
내적수직선, 수직선추정과제, 비율판단의 파워모형, 기준점 책략, 선분 길이, mental number line, number line estimation task, power model of proportion judgment, cyclical model, line length

Abstract

Number line estimation task has been widely used to test spatial representation of numerical concepts. However, the claim of power model that participants respond based on a few reference points suggests the possibility that results can be affected by cognitive strategies. The current research tested whether use of reference points in number line estimation task affects shape of mental number line, that is, participants’ response patterns. Based on the reliable linearity reported in adults’ mental number line, we asked our adult participants to estimate positions including both reference points and those close to the reference points, and then observed whether there happens any change in the typical linearity in number line estimation. The results showed linearity in the middle reference points, but the tendency was fairly weaker in the other reference points. In particular, greater estimation bias was observed for the positions closer to the reference points, indicating use of reference points in estimation and importance of middle reference point. In addition, bipolar response tendency was obtained where participants underestimate or overestimate reference points on the left or right side of the line, respectively. Additional experimental results showed stronger bipolarity for longer line lengths, suggesting importance of line length in number line estimation task. These results imply that researchers need to be cautious in interpretation of experimental data as the results can be easily affected by various perceptual and cognitive factors.

keywords
내적수직선, 수직선추정과제, 비율판단의 파워모형, 기준점 책략, 선분 길이, mental number line, number line estimation task, power model of proportion judgment, cyclical model, line length

참고문헌

1.

Anton-Erxleben, K., Henrich, C., & Treue, S. (2007). Attention changes perceived size of moving visual patterns. Journal of Vision, 7, 5.

2.

Barth, H. C., & Paladino, A. M. (2011). The development of numerical estimation: Evidence against a representational shift. Developmental Science, 14, 125-135.

3.

Carrasco, M. (2011). Visual attention: The past 25years. Vision Research, 51, 1484-1525.

4.

Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7, 308-313.

5.

Chesney, D. L., & Matthews, P. G. (2013). Knowledge on the line: Manipulating beliefs about the magnitudes of symbolic numbers affects the linearity of line estimation tasks. Psychonomic Bulletin & Review, 20, 1146-1153.

6.

Dackermann, T., Huber, S., Bahnmueller, J., Nuerk, H. C., & Moeller, K. (2015). An integration of competing accounts on children’s number line estimation. Frontiers in Psychology, 6.

7.

Dehaene, S. (2011). The number sense: How the mind creates mathematics. New York, NY: Oxford University Press.

8.

Ebersbach, M., Luwel, K., Frick, A., Onghena, P., & Verschaffel, L. (2008). The relationship between the shape of the mental number line and familiarity with numbers in 5-to 9-year old children: Evidence for a segmented linear model. Journal of Experimental Child Psychology, 99, 1-17.

9.

Friso-van den Bos, I., Kroesbergen, E. H., Van Luit, J. E., Xenidou-Dervou, I., Jonkman, L. M., Van der Schoot, M., & Van Lieshout, E. C. (2015). Longitudinal development of number line estimation and mathematics performance in primary school children. Journal of Experimental Child Psychology, 134, 12-29.

10.

Gobell, J., & Carrasco, M. (2005). Attention alters the appearance of spatial frequency and gap size. Psychological Science, 16, 644-651.

11.

Hollands, J. G., & Dyre, B. P. (2000). Bias in proportion judgments: The cyclical power model. Psychological Review, 107, 500.

12.

Hubbard, E. M., Piazza, M., Pinel, P., & Dehaene, S. (2005). Interactions between number and space in parietal cortex. Nature Reviews Neuroscience, 6, 435-448.

13.

Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H. C. (2009). Children’s early mental number line: Logarithmic or decomposed linear?. Journal of Experimental Child Psychology, 103, 503-515.

14.

Opfer, J. E., Thompson, C. A., & Kim, D. (2016). Free versus anchored numerical estimation: A unified approach. Cognition, 149, 11-17.

15.

Rips, L. J. (2013). How many is a zillion? Sources of number distortion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39, 1257.

16.

Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation evidence for multiple representations of numerical quantity. Psychological Science, 14, 237-250.

17.

Slusser, E. B., Santiago, R. T., & Barth, H. C. (2013). Developmental change in numerical estimation. Journal of Experimental Psychology:General, 142, 193.

18.

Spence, I. (1990). Visual psychophysics of simple graphical elements. Journal of Experimental Psychology: Human Perception and Performance, 16, 683.

19.

Spence, I., & Krizel, P. (1994). Children's perception of proportion in graphs. Child Development, 65, 1193-1213.

20.

Sullivan, J. L., Juhasz, B. J., Slattery, T. J., & Barth, H. C. (2011). Adults’ number-line estimation strategies: Evidence from eye movements. Psychonomic Bulletin & Review, 18, 557-563.

21.

Walsh, V. (2003). A theory of magnitude:common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7, 483-488.

22.

White, S. L., & Szűcs, D. (2012). Representational change and strategy use in children's number line estimation during the first years of primary school. Behavioral and Brain Functions, 8, 1.

한국심리학회지: 인지 및 생물