ISSN : 1226-9654
인간의 뇌 네트워크는 정보처리 효율성을 도모하기 위해 분리와 통합이라는 두 가지 기본 원리에 따라 조직화된다. 본 연구는 휴지상태 fMRI를 이용하여 분리와 통합의 대표적 네트워크 측정치인 전반적 효율성과 국소적 효율성을 중심으로, 국내 여성들의 노화에 따른 뇌 연결성의 변화를 살펴보았다. 연구 참여자는 젊은 여성 14명, 노인 여성 28명이었다. 노인들은 젊은 성인에 비해 전반적 효율성은 작고, 국소적 효율성은 큰 것으로 나타났다. 또한 노인들의 KDRS-2 점수와 전반적 효율성은 정적 상관 경향성을, 국소적 효율성은 유의한 부적 상관을 보였다. 연령이 증가함에 따라 뇌 네트워크는 전반적인 통합성이 감소하는 한편, 근거리의 국지적 연결성이 증가하는 것으로 시사된다. 또한 네트워크 전반적 통합성이 낮고 국지적 연결성이 높을수록 노인들의 인지기능이 낮은 경향이 있었다.
The human brain networks are organized with two fundamental principles, i.e. segregation and integration, for efficient information processing. This study investigated age-related changes in the brain networks of Korean women, using resting-state fMRI and focusing on local efficiency and global efficiency that represent segregation and integration respectively. Fourteen young adults and 28 old adults participated. Old adults had lower global efficiency but higher local efficiency in the functional brain networks compared with young adults. In addition, global efficiency of old adults was positively associated with the KDRS-2 scores at trend level, and their local efficiency was negatively correlated with the KDRS-2 scores. These results suggest that global integration of the brain network may reduce but short-range local connection increase with aging. In old adults, lower network integration and higher local connection seems to be linked lower cognitive function.
Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3, e17.
Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis and functional systems. Nature Reviews Neuroscience, 10, 186-198.
Chey, J. (2011). Korean Dementia Rating Scale-2. Seoul:Hakjisa.
Hwang, S., Kim, J., Park, K., Chey, J., & Hong, S. (2012). Korean-Wechsler Intelligence Scale-IV. Daegu:Korea Psychology.
Jeong, H., & Kang, E. (2016). Resting-state fMRI analysis: techniques and implications. The Korean Journal of Cognitive and Biological Psychology, 28, 445-478.
Meunier, D., Achard, S., Morcom, A., & Bullmore, E. (2009). Age-related changes in modular organization of human brain functional networks. Neuroimage, 44, 715-723.
Park, T. J. (2004). Cognitive neral mechanisms of aging. The Korean Journal of Cognitive and Biological Psychology, 16, 317-336.
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52, 1059-1069.
Seo, E. H., Lee, D. Y., Lee, J., Park, J., Sohn, B. K., Lee, D. S., Choe, Y. M., & Woo, J. I. (2013). Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer’s disease. PLos One, 8, e53922.
Song, J., Birn, R. M., Boly, M., Meier, T. B., Nair, B. A., Meyerand, M. E., & Prabhakaran, V. (2014). Age-related reorganizational changes in modularity and functional connectivity of human brain networks. Brain Connectivity, 4, 662-676.
Sporns, O. (2013a). Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23, 162-171.
Sporns, O. (2013b). Structure and function of complex brain networks. Dialogues in Clinical Neuroscience, 15, 247-262.
Statistics Korea (2011). 2010 Population and Housing Census Report: Based on Complete Enumeration, Vol. 1. Population. Daejeon: Statistics Korea.
Sun, J., Tong, S., & Yang, G. Y. (2012). Reorganization of brain networks in aging and age-related diseases. Aging and Disease, 3, 181-193.
van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Pol, H. E. (2009). Efficiency of functional brain networks and intellectual performance. The Journal of Neuroscience, 29, 7619-7624.
Wang, J., Zuo, X., & He, Y. (2010). Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience, 4, 1-14.
Whitfield-Gabrieli, S., & Nieto-Castanon, A. (2012). Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connectivity, 2, 125-141.
Zhu, W., Wen, W., He, Y., Xia, A., Anstey, K. J., Sachdev, P. (2012). Changing topological patterns in normal aging using large-scale structural networks. Neurobiology of Aging, 33, 899-913.