바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

아동의 수 직선 추정의 정확도와 수학 성취도 간의 관계에 대한 숫자 비교 능력의 매개 효과

Number Comparison Efficiency Mediates the Relationship between the Precision of Numberline Estimation and Math Achievement in Children

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2017, v.29 no.2, pp.165-172
https://doi.org/10.22172/cogbio.2017.29.2.004
김나래 (중앙대학교)
조수현 (중앙대학교)
  • 다운로드 수
  • 조회수

초록

숫자를 이용한 수학적 문제 해결 능력이 어떠한 요인에 의해 영향을 받고 어떠한 기전에 의해 발달하는 것인가에 대한 연구가 활발하게 이루어지고 있다. 본 연구에서는 매개 분석을 통해 아동의 수학 성취도에 기여하는 것으로 보고된 여러 기초 수 인지 능력들이 어떠한 기전을 통해 수학성취도에 기여하는지를 밝히고자 하였다. 본 연구에서 측정한 기초 수 인지 능력에는 수 추정 능력, 숫자 처리 능력, 수량 비교 능력이 포함되었다. 매개 분석 결과, 수 추정 과제를 통해 측정한 수 표상의 정확도가 높을수록 숫자의 의미 정보를 효율적으로 처리할 수 있게 되어, 수학 성취도가 높아짐을 확인하였다. 이러한 결과는, 수학 학습 장애 아동에게 먼저 내적 수 표상의 정확도를 높이는 훈련을 실시한 후, 숫자의 의미를 빠르고 정확하게 처리하는 연습을 시키는 단계적 개입이 수학성취도 향상에 도움이 될 가능성을 시사한다.

keywords
내적 수 표상, 수 직선 추정, 숫자 비교, 수량 비교, 수학성취도, 매개 분석, mental number representation, numberline estimation, number comparison, numerosity comparison, math achievement, mediation analysis

Abstract

Many studies are being conducted to understand factors that influence mathematical problem solving ability and the mechanism through which it develops. The present study conducted mediation analysis to examine which basic numerical cognitive abilities contribute to math achievement and whether there is a mediating factor in this relationship. The present study measured the precision of number estimation, number processing ability, numerosity comparison ability as basic numerical cognitive abilities. As a result of the mediation analysis, we found that number comparison efficiency mediates the relationship between the precision of the internal number representation (measured with number estimation) and math achievement. This finding suggests the possibility that a stepwise intervention of first improving the precision of the internal number representation and then training to efficiently process symbolic numbers will contribute to the enhancement of math achievement in children with mathematical disabilities.

keywords
내적 수 표상, 수 직선 추정, 숫자 비교, 수량 비교, 수학성취도, 매개 분석, mental number representation, numberline estimation, number comparison, numerosity comparison, math achievement, mediation analysis

참고문헌

1.

Arthur Jr, W., Tubre, T. C., Paul, D. S., & Sanchez-Ku, M. L. (1999). College-sample psychometric and normative data on a short form of the Raven Advanced Progressive Matrices Test. Journal of Psychoeducational Assessment, 17, 354-361.

2.

Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102, 14116-14121.

3.

Booth, J. L., & Siegler, R. S. (2006). Developmental and individual differences in pure numerical estimation. Developmental Psychology, 42, 189.

4.

Booth, J. L., & Siegler, R. S. (2008). Numerical magnitude representations influence arithmetic learning. Child Development, 79, 1016-1031.

5.

Brannon, E. M. (2006). The representation of numerical magnitude. Current Opinion in Neurobiology, 16, 222-229.

6.

Dehaene, S. (2007). Symbols and quantities in parietal cortex: Elements of a mathematical theory of number representation and manipulation. In P. Haggard & Y. Rossetti (Eds.), Attention & performance XXII. Sensori-motor foundations of higher cognition (pp. 527-574). Cambridge, MA: Harvard University Press.

7.

Durand, M., Hulme, C., Larkin, R., & Snowling, M. (2005). The cognitive foundations of reading and arithmetic skills in 7-to 10-yearolds. Journal of Experimental Child Psychology, 91, 113-136.

8.

Guillaume, M., & Gevers, W. (2016). Assessing the Approximate Number System: no relation between numerical comparison and estimation tasks. Psychological Research, 80, 248-258.

9.

Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: The approximate number system in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44, 1457-1465.

10.

Halberda, J., Mazzocco, M. M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455, 665-668.

11.

Holloway, I. D., & Ansari, D. (2009). Mapping numerical magnitudes onto symbols: The numerical distance effect and individual differences in children’s mathematics achievement. Journal of Experimental Child Psychology, 103, 17-29.

12.

Jang, S., & Cho, S. (2016). The acuity for numerosity (but not continuous magnitude)discrimination correlates with quantitative problem solving but not routinized arithmetic. Current Psychology, 35, 44-56.

13.

Lee, K., & Cho, S. (in press). Magnitude processing and complex calculation is negatively impacted by mathematics anxiety while retrieval‐based simple calculation is not. International Journal of Psychology. doi:10.1002/ijop.12412

14.

Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14, 1292-1300.

15.

Mazzocco, M. M., Feigenson, L., & Halberda, J. (2011). Preschoolers' precision of the approximate number system predicts later school mathematics performance. PLoS ONE, 6, e23749.

16.

Mussolin, C., De Volder, A., Grandin, C., Schlögel, X., Nassogne, M.-C., & Noël, M.-P. (2010). Neural correlates of symbolic number comparison in developmental dyscalculia. Journal of Cognitive Neuroscience, 22, 860-874.

17.

Nieder, A., & Dehaene, S. (2009). Representation of number in the brain. Annual Review of Neuroscience, 32, 185-208.

18.

Park, Y., & Cho, S. (in press). Developmental changes in the relationship between magnitude acuities and mathematical achievement in elementary school children. Educational Psychology, 1-15. doi:10.1080/01443410.2015.1127332

19.

Park, K., Kim, K., Song, Y., Jeong, D., & Jeong, I. (2008). KISE-Basic Academic Achievement Tests (KISE-BAAT). Ansan: Korea National Institute for Special Education.

20.

Piazza, M., Izard, V., Pinel, P., Le Bihan, D., & Dehaene, S. (2004). Tuning curves for approximate numerosity in the human intraparietal sulcus. Neuron, 44, 547-555.

21.

Piazza, M., Pinel, P., Le Bihan, D., & Dehaene, S. (2007). A magnitude code common to numerosities and number symbols in human intraparietal cortex. Neuron, 53, 293-305.

22.

Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306, 499-503.

23.

Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879-891.

24.

Rousselle, L., & Noël, M. -P. (2007). Basic numerical skills in children with mathematics learning disabilities: A comparison of symbolic vs non-symbolic number magnitude processing. Cognition, 102, 361-395.

25.

Sasanguie, D., De Smedt, B., Defever, E., & Reynvoet, B. (2012). Association between basic numerical abilities and mathematics achievement. British Journal of Developmental Psychology, 30, 344-357.

26.

Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number-space mappings: What underlies mathematics achievement?. Journal of Experimental Child Psychology, 114, 418-431.

27.

Siegler, R. S., & Booth, J. L. (2004). Development of numerical estimation in young children. Child Development, 75, 428-444.

28.

Siegler, R. S., & Opfer, J. E. (2003). The development of numerical estimation: Evidence for multiple representations of numerical quantity. Psychological Science, 14, 237-250.

한국심리학회지: 인지 및 생물