바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Encoding and maintenance of the biological motion information during working memory tasks in patients with schizophrenia and healthy individuals

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2019, v.31 no.2, pp.109-123
https://doi.org/10.22172/cogbio.2019.31.2.004


  • Downloaded
  • Viewed

Abstract

Impaired working memory (WM) is the most reliably reported cognitive dysfunction in schizophrenia. Past research have revealed that increased novelty or salience of visual stimuli could facilitate the WM process, which is not clear in schizophrenia yet. In the present study, we investigated WM performance of healthy people and patients with schizophrenia using biological motion (BM), which is unique motion stimulli carrying rich social information. Experiment 1 examined WM accuracy for BM and non-BM stimuli in low- and high-memory load conditions. In experiment 2, we investigated WM for BM, non-BM and static polygon stimuli in three different delay conditions. The results showed that overall performance was worse in the patients group. WM accuracy for BM stimuli did not drop and remained higher than those for the other stimuli regardless of increasing memory load and delay in control group. Patients group also showed higher accuracy for BM stimuli than the other stimuli across the conditions but it decreased with incresing load and delay, unlike controls. Our findings suggest that socially-relevant stimuli such as BM could facilitate WM in schizophrenia and it may provide a clue of target for cognitive remediation strategies.

keywords
Working memory, Biological motion, Schizophrenia, Social cognition, 작업기억, 생물형운동,  조현병, 사회인지

Reference

1.

American Psychiatric Association (1994). DSM-IV: diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Press; 1994.

2.

Blake, R., & Shiffrar, M.(2007). Perception of human motion. Annual Review of Psychology, 58, 47-73. https://doi.org/10.1146/annurev.psych.57.102904.190152 PMID: 16903802

3.

Boulay, L. J., Labelle, A., Bourget, D., Robertson, S., Habib, R., Tessier, P., et al. (2007). Dissociating medication effects from learning and practice effects in a neurocognitive study of schizophrenia: Olanzapine versus haloperidol. Cognitive Neuropsychiatry, 12, 322-338.

4.

Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 443-446. DOI: 10.1163/156856897X00357

5.

Brittain, P., Ffytche, D. H., McKendrick, A., & Surguladze, S. (2010). Visual processing, social cognition and functional outcome in schizophrenia. Psychiatry Research, 178, 270-275. https://doi.org/10.1016/j.psychres.2009.09.013 PMID: 20494457

6.

Brüne, M. (2003). Theory of mind and the role of IQ in chronic disorganized schizophrenia. Schizophrenia Research, 60, 57-64.

7.

Butler, P. D., & Javitt, D. C. (2005). Early-stage visual processing deficits in schizophrenia. Current Opinion in Psychiatry 18, 151-157.

8.

Cavanagh, P., Labianca, A., & Thornton, I. M. (2001). Attention-based visual routines: Sprites. Cognition, 80, 47-60.

9.

Chen, Y., Nakayama, K., Levy, D. L., Matthysse, S., &Holzman, P. S. Processing of global, but not local, motion direction is deficient in schizophrenia. Schizophrenia Research, 61, 215-27. PMID: 12729873

10.

Chen, Y., Palafox, G. P., Nakayama, K., Levy, D. L., Matthysse, S., & Holzman, P. S. (1999). Motion perception in schizophrenia. Archives of General Psychiatry, 56, 149-154. PMID: 10025439

11.

Edwards, J., Pattison, P. E., Jackson, H. J., & Wales, R. J. (2001). Facial affect and affective prosody recognition in first-episode schizophrenia. Schizophrenia Research, 48, 235-53.

12.

Fine, M. S., & Minnery, B. S. (2009). Visual salience affects performance in a working memory task. Journal of Neuroscience, 29, 8016-8021. https://doi.org/10.1523/JNEUROSCI.5503-08.2009 PMID: 19553441

13.

First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. (1996). Structured clinical interview for DSM-IV Axis I disorder. New York, NY: New York State Psychiatric Institute.

14.

Foxe, J. J., Doniger, G. M., & Javitt, D. C. (2001). Early visual processing deficits in schizophrenia: impaired P1 generation revealed by high-density electrical mapping. Neuroreport 12, 3815-3820.

15.

Gilbert, C. D., Li, W. (2013). Top-down influences on visual processing. Nature Reviews Neuroscience, 14, 350–363.

16.

Goldlberg, T. E., Goldman, R. S., Burdick, K. E., Malhotra, A. K., Lencz, T., Patel, R. C., et al. (2007). Cognitive improvement after treatment with second-generation antipsychotic medications in first-episode schizophrenia: is it a practice effect? Archives of General Psychiatry, 64, 1115-1122.

17.

Green, M. F., & Horan, W. P. (2010). Social cognition in schizophrenia. Current Directions in Psychological Science, 19, 243-248.

18.

Green, M. F., Marshall, B. D. Jr., Wirshing, W. C., Ames, D., Marder. S, R,, McGurk. S., et al. (1997). Does risperidone improve verbal working memory in treatment-resistant schizophrenia? American Journal of Psychiatry, 154, 799-804.

19.

Haut, M. W., Cahill, J., Cutlip, W. D., Stevenson, J. M., Makela, E. H., & Bloomfield, S. M. (1996). On the nature of Wisconsin Card Sorting Test performance in schizophrenia. Psychiatry Research, 65, 15-22. PMID:8953657

20.

Huang, J., Tan, S. P., Walsh, S. C., Spriggens, L. K., Neumann, D. L., Shum, D. H., et al. (2014). Working memory dysfunctions predict social problem solving skills in schizophrenia. Psychiatry Research, 220, 96-101. https://doi.org/10.1016/j.psychres.2014.07.043 PMID: 25110314

21.

Jahshan, C., Wynn, J. K., Mathis, K. I., & Green, M. F. (2015). The neurophysiology of biological motion perception in schizophrenia. Brain and Behavior, 5(1), 75-84. https://doi.org/10.1002/brb3.303 PMID: 25722951

22.

Johansson, G.(1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201-211.

23.

Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13, 261-276. PMID: 3616518

24.

Keane, B. P., Peng, Y., Dimmin, D., Silverstein, S. M., & Lu, H. (2018). Intact perception of coherent motion, dynamic rigid form, and biological motion in chronic schizophrenia. Psychiatry Research, 268, 53-59.

25.

Kim, J., Jung, E. L., Lee, S.-H., & Blake, R. (2015). A new technique for generating disordered point-light animations for the study of biological motion perception. Journal of Vision, 15. doi:10.1167/15.11.13

26.

Kim, J., Matthews, N. L., & Park, S. (2010). An event-related fMRI study of phonological verbal working memory in schizophrenia. PLoS ONE, 5(8), e12068. https://doi.org/10.1371/journal.pone.0012068 PMID: 20725639

27.

Kim, J., Norton, D., McBain, R., Ongur, D., & Chen, Y. (2013). Deficient biological motion perception in schizophrenia: Results from a motion noise paradigm. Frontiers in Psychology, 4. Article 391. https://doi.org/10.3389/fpsyg.2013.00391 PMID: 23847566

28.

Kim, J., & Park, S. (2011). Visual perception of deficits associated with the magnocellular pathway in schizophrenia. Korean Journal of Schizophrenia Research, 14(2), 61-75.

29.

Kim, J., Park, S., & Blake, R. (2011). Perception of biological motion in schizophrenia and healthy individuals: A behavioral and fMRI study. PLoS ONE, 6(5), e19971. https://doi.org/10.1371/journal.pone.0019971 PMID: 21625492

30.

Kim, J., Park, S., Shin, Y-W., Lee, K. J., & Kwon, J. S. (2006). Self-initiated encoding facilitates object working memory in schizophrenia: implications for the etiology of working memory deficit. Schizophrenia Research, 82, 65-74. https://doi.org/10.1016/j.schres.2005.10.017 PMID: 16377155

31.

Lee H, Kim J. (2017). Load-sensitive impairment of working memory for biological motion in schizophrenia. PLoS ONE 12(10): e0186498. https://doi.org/10.1371/journal. pone.0186498

32.

Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: a meta-analysis. Journal of Abnormal Psychology, 144, 599-611.

33.

Lee, J., & Park, S. (2006). The role of stimulus salience in CPT-AX performance of schizophrenia patients. Schizophrenia Research, 81, 191-197. https://doi.org/10.1016/j.schres.2005.08.015 PMID: 16226875

34.

Lee, T. S., Yang, C. F., Romero, R. D., & Mumford, D. (2002). Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency. Nature Neuroscience, 5, 589–597.

35.

Ma, Y., Paterson, H. M., & Pollick, F. E. (2006). A motion-capture library for the study of identity, gender, and emotion perception from biological motion. Behavior Research Methods, Instruments, & Computers, 38, 134-141.

36.

Mayer, J., Kim, J., & Park, S. (2011). Enhancing visual working memory encoding: the role of target novelty. Visual Cognition, 19, 863-85. https://doi.org/10.1080/13506285.2011.594459 PMID: 23997641

37.

Mayer, J. S., Kim, J., & Park, S. (2014). Failure to benefit from target novelty during encoding contributes to working memory deficits in schizophrenia. Cognitive Neuropsychiatry, 19(3), 268-279. doi: 10.1080/13546805.2013.854199.

38.

Nuechterlein, K. H. (1991). Vigilance in schizophrenia and related disorder. In: Steinhauer SR, Gruzelier JH, Zubin J, editors. Handbook of Schizophrenia. Vol. 5. Amsterdam:Elsevier

39.

Park, S., & Holzman, P. S. (1992). Schizophrenics show spatial working memory deficits. Archives of General Psychiatry, 49(12), 975-82. PMID: 1449384

40.

Park, S., & Holzman, P.S. (1993). Association of working memory deficit and eye tracking dysfunction in schizophrenia. Schizophrenia Research, 11, 55-61. PMID:8297805

41.

Park, S., Swisher, T., & Knurek, E. (2001). Affect facilitates prefrontal function in schizophrenia: “WHAT” modulates working memory for “WHERE”. Schizophrenia Research, 49, 118.

42.

Pelli, D. G. (1997). The video toolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437-442. PMID: 9176953

43.

Piskulic, D., Olver, J.S., Norman, T.R., & Maruff, P. (2007). Behavioral studies of spatial working memory dysfunction in schizophrenia: a quantitative literature review. Psychiatry Research, 150, 111-121. https://doi.org/10.1016/j.psychres.2006.03.018 PMID: 17292970

44.

Raine, A. (1991). The SPQ: A scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophrenia Bulletin, 17, 55-64. PMID: 1805349

45.

Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception and Psychophysics, 64, 754-63. PMID: 12201334

46.

Shen, M., Gao, Z., Ding, X., Zhou, B., & Huang, X. (2014). Holding biological motion information in working memory. Journal of Experimental Psychology, 40(4), 1332-1345. http://dx.doi.org/10.1037/a0036839

47.

Thornton, I. M., Rensink, R. A., Shiffrar, M. (2002), Active versus passive processing of biological motion. Perception 31, 837-853.

48.

van Boxtel, J. J. A., & Lu, H. (2013). A biological motion toolbox for reading, displaying, and manipulating motion capture data in research settings. Journal of Vision, 13. doi:10.1167/13.12.7

49.

Yeom, T. H., Park, Y. S., Oh, K. J., Kim, J. K., & Lee, Y, H. (1992). Korean-Wechsler adult intelligence scale manual. Seoul: Korean Guidance Press.

50.

Yi, J. S., Ahn, Y. M., Shin, H. K., An, S. K., Joo, Y. H., Kim, S. H., et al. (2001). Reliability and validity of the Korean version of the Positive and Negative Syndrome Scale. Journal of Korean Neuropsychiatric Association, 40, 1090-1105.

The Korean Journal of Cognitive and Biological Psychology