ISSN : 1226-9654
작업기억의 결함은 조현병(schizophrenia)에서 가장 일관되게 보고되어온 인지장애이다. 작업기억에 관한 선행 연구들은 자극의 새로움(novelty)이나 현저성(salience)에 따라 기억과정이 촉진될 수 있음을 보고해왔다. 본 연구에서는 특수한 운동자극이면서 사회적 정보를 포함하는 생물형운동(biological motion, BM)을 이용하여 정상인과 조현병환자집단에서의 작업기억수행을 관찰하였다. 실험 1에서는 자극종류(BM, non-biological motion: NBM)와 기억부하에 따라 지연반응과제의 수행을 관찰하였고, 실험 2에서는 지연시간에 따른 BM의 효과를 알아보기 위해 BM, NBM, 도형자극을 짧거나 긴 지연시간 조건에 따라 제시하였다. 실험 결과, 조현병환자집단은 정상인에 비해 전체적인 수행정도가 낮았다. 또한 두 집단 모두에서 BM이 다른 자극에 비해 기억정확도가 높았으나, 이 효과는 두 집단에서 다른 양상이었다. 정상인집단의 경우 기억부하 및 지연시간이 증가해도 BM의 효과가 유지되었으나, 조현병집단에서는 효과가 감소하였다. 그러나, 환자집단 내에서는 다른 자극에 비해 BM에 대한 정확도가 높게 유지되었다. 이 결과는 조현병환자들은 정상인에 비해 제한적이나, BM자극 특성에 의한 기억촉진효과를 경험한다는 점을 보여주며, 사회적 환경의 적절한 제공을 통해 저하된 인지기능을 다소 보완할 수 있는 가능성을 시사한다.
Impaired working memory (WM) is the most reliably reported cognitive dysfunction in schizophrenia. Past research have revealed that increased novelty or salience of visual stimuli could facilitate the WM process, which is not clear in schizophrenia yet. In the present study, we investigated WM performance of healthy people and patients with schizophrenia using biological motion (BM), which is unique motion stimulli carrying rich social information. Experiment 1 examined WM accuracy for BM and non-BM stimuli in low- and high-memory load conditions. In experiment 2, we investigated WM for BM, non-BM and static polygon stimuli in three different delay conditions. The results showed that overall performance was worse in the patients group. WM accuracy for BM stimuli did not drop and remained higher than those for the other stimuli regardless of increasing memory load and delay in control group. Patients group also showed higher accuracy for BM stimuli than the other stimuli across the conditions but it decreased with incresing load and delay, unlike controls. Our findings suggest that socially-relevant stimuli such as BM could facilitate WM in schizophrenia and it may provide a clue of target for cognitive remediation strategies.
American Psychiatric Association (1994). DSM-IV: diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: American Psychiatric Press; 1994.
Blake, R., & Shiffrar, M.(2007). Perception of human motion. Annual Review of Psychology, 58, 47-73. https://doi.org/10.1146/annurev.psych.57.102904.190152 PMID: 16903802
Boulay, L. J., Labelle, A., Bourget, D., Robertson, S., Habib, R., Tessier, P., et al. (2007). Dissociating medication effects from learning and practice effects in a neurocognitive study of schizophrenia: Olanzapine versus haloperidol. Cognitive Neuropsychiatry, 12, 322-338.
Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10, 443-446. DOI: 10.1163/156856897X00357
Brittain, P., Ffytche, D. H., McKendrick, A., & Surguladze, S. (2010). Visual processing, social cognition and functional outcome in schizophrenia. Psychiatry Research, 178, 270-275. https://doi.org/10.1016/j.psychres.2009.09.013 PMID: 20494457
Brüne, M. (2003). Theory of mind and the role of IQ in chronic disorganized schizophrenia. Schizophrenia Research, 60, 57-64.
Butler, P. D., & Javitt, D. C. (2005). Early-stage visual processing deficits in schizophrenia. Current Opinion in Psychiatry 18, 151-157.
Cavanagh, P., Labianca, A., & Thornton, I. M. (2001). Attention-based visual routines: Sprites. Cognition, 80, 47-60.
Chen, Y., Nakayama, K., Levy, D. L., Matthysse, S., &Holzman, P. S. Processing of global, but not local, motion direction is deficient in schizophrenia. Schizophrenia Research, 61, 215-27. PMID: 12729873
Chen, Y., Palafox, G. P., Nakayama, K., Levy, D. L., Matthysse, S., & Holzman, P. S. (1999). Motion perception in schizophrenia. Archives of General Psychiatry, 56, 149-154. PMID: 10025439
Edwards, J., Pattison, P. E., Jackson, H. J., & Wales, R. J. (2001). Facial affect and affective prosody recognition in first-episode schizophrenia. Schizophrenia Research, 48, 235-53.
Fine, M. S., & Minnery, B. S. (2009). Visual salience affects performance in a working memory task. Journal of Neuroscience, 29, 8016-8021. https://doi.org/10.1523/JNEUROSCI.5503-08.2009 PMID: 19553441
First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. (1996). Structured clinical interview for DSM-IV Axis I disorder. New York, NY: New York State Psychiatric Institute.
Foxe, J. J., Doniger, G. M., & Javitt, D. C. (2001). Early visual processing deficits in schizophrenia: impaired P1 generation revealed by high-density electrical mapping. Neuroreport 12, 3815-3820.
Gilbert, C. D., Li, W. (2013). Top-down influences on visual processing. Nature Reviews Neuroscience, 14, 350–363.
Goldlberg, T. E., Goldman, R. S., Burdick, K. E., Malhotra, A. K., Lencz, T., Patel, R. C., et al. (2007). Cognitive improvement after treatment with second-generation antipsychotic medications in first-episode schizophrenia: is it a practice effect? Archives of General Psychiatry, 64, 1115-1122.
Green, M. F., & Horan, W. P. (2010). Social cognition in schizophrenia. Current Directions in Psychological Science, 19, 243-248.
Green, M. F., Marshall, B. D. Jr., Wirshing, W. C., Ames, D., Marder. S, R,, McGurk. S., et al. (1997). Does risperidone improve verbal working memory in treatment-resistant schizophrenia? American Journal of Psychiatry, 154, 799-804.
Haut, M. W., Cahill, J., Cutlip, W. D., Stevenson, J. M., Makela, E. H., & Bloomfield, S. M. (1996). On the nature of Wisconsin Card Sorting Test performance in schizophrenia. Psychiatry Research, 65, 15-22. PMID:8953657
Huang, J., Tan, S. P., Walsh, S. C., Spriggens, L. K., Neumann, D. L., Shum, D. H., et al. (2014). Working memory dysfunctions predict social problem solving skills in schizophrenia. Psychiatry Research, 220, 96-101. https://doi.org/10.1016/j.psychres.2014.07.043 PMID: 25110314
Jahshan, C., Wynn, J. K., Mathis, K. I., & Green, M. F. (2015). The neurophysiology of biological motion perception in schizophrenia. Brain and Behavior, 5(1), 75-84. https://doi.org/10.1002/brb3.303 PMID: 25722951
Johansson, G.(1973). Visual perception of biological motion and a model for its analysis. Perception and Psychophysics, 14, 201-211.
Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13, 261-276. PMID: 3616518
Keane, B. P., Peng, Y., Dimmin, D., Silverstein, S. M., & Lu, H. (2018). Intact perception of coherent motion, dynamic rigid form, and biological motion in chronic schizophrenia. Psychiatry Research, 268, 53-59.
Kim, J., Jung, E. L., Lee, S.-H., & Blake, R. (2015). A new technique for generating disordered point-light animations for the study of biological motion perception. Journal of Vision, 15. doi:10.1167/15.11.13
Kim, J., Matthews, N. L., & Park, S. (2010). An event-related fMRI study of phonological verbal working memory in schizophrenia. PLoS ONE, 5(8), e12068. https://doi.org/10.1371/journal.pone.0012068 PMID: 20725639
Kim, J., Norton, D., McBain, R., Ongur, D., & Chen, Y. (2013). Deficient biological motion perception in schizophrenia: Results from a motion noise paradigm. Frontiers in Psychology, 4. Article 391. https://doi.org/10.3389/fpsyg.2013.00391 PMID: 23847566
Kim, J., & Park, S. (2011). Visual perception of deficits associated with the magnocellular pathway in schizophrenia. Korean Journal of Schizophrenia Research, 14(2), 61-75.
Kim, J., Park, S., & Blake, R. (2011). Perception of biological motion in schizophrenia and healthy individuals: A behavioral and fMRI study. PLoS ONE, 6(5), e19971. https://doi.org/10.1371/journal.pone.0019971 PMID: 21625492
Kim, J., Park, S., Shin, Y-W., Lee, K. J., & Kwon, J. S. (2006). Self-initiated encoding facilitates object working memory in schizophrenia: implications for the etiology of working memory deficit. Schizophrenia Research, 82, 65-74. https://doi.org/10.1016/j.schres.2005.10.017 PMID: 16377155
Lee H, Kim J. (2017). Load-sensitive impairment of working memory for biological motion in schizophrenia. PLoS ONE 12(10): e0186498. https://doi.org/10.1371/journal. pone.0186498
Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: a meta-analysis. Journal of Abnormal Psychology, 144, 599-611.
Lee, J., & Park, S. (2006). The role of stimulus salience in CPT-AX performance of schizophrenia patients. Schizophrenia Research, 81, 191-197. https://doi.org/10.1016/j.schres.2005.08.015 PMID: 16226875
Lee, T. S., Yang, C. F., Romero, R. D., & Mumford, D. (2002). Neural activity in early visual cortex reflects behavioral experience and higher-order perceptual saliency. Nature Neuroscience, 5, 589–597.
Ma, Y., Paterson, H. M., & Pollick, F. E. (2006). A motion-capture library for the study of identity, gender, and emotion perception from biological motion. Behavior Research Methods, Instruments, & Computers, 38, 134-141.
Mayer, J., Kim, J., & Park, S. (2011). Enhancing visual working memory encoding: the role of target novelty. Visual Cognition, 19, 863-85. https://doi.org/10.1080/13506285.2011.594459 PMID: 23997641
Mayer, J. S., Kim, J., & Park, S. (2014). Failure to benefit from target novelty during encoding contributes to working memory deficits in schizophrenia. Cognitive Neuropsychiatry, 19(3), 268-279. doi: 10.1080/13546805.2013.854199.
Nuechterlein, K. H. (1991). Vigilance in schizophrenia and related disorder. In: Steinhauer SR, Gruzelier JH, Zubin J, editors. Handbook of Schizophrenia. Vol. 5. Amsterdam:Elsevier
Park, S., & Holzman, P. S. (1992). Schizophrenics show spatial working memory deficits. Archives of General Psychiatry, 49(12), 975-82. PMID: 1449384
Park, S., & Holzman, P.S. (1993). Association of working memory deficit and eye tracking dysfunction in schizophrenia. Schizophrenia Research, 11, 55-61. PMID:8297805
Park, S., Swisher, T., & Knurek, E. (2001). Affect facilitates prefrontal function in schizophrenia: “WHAT” modulates working memory for “WHERE”. Schizophrenia Research, 49, 118.
Pelli, D. G. (1997). The video toolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10, 437-442. PMID: 9176953
Piskulic, D., Olver, J.S., Norman, T.R., & Maruff, P. (2007). Behavioral studies of spatial working memory dysfunction in schizophrenia: a quantitative literature review. Psychiatry Research, 150, 111-121. https://doi.org/10.1016/j.psychres.2006.03.018 PMID: 17292970
Raine, A. (1991). The SPQ: A scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophrenia Bulletin, 17, 55-64. PMID: 1805349
Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and automatic attentional control of visual working memory. Perception and Psychophysics, 64, 754-63. PMID: 12201334
Shen, M., Gao, Z., Ding, X., Zhou, B., & Huang, X. (2014). Holding biological motion information in working memory. Journal of Experimental Psychology, 40(4), 1332-1345. http://dx.doi.org/10.1037/a0036839
Thornton, I. M., Rensink, R. A., Shiffrar, M. (2002), Active versus passive processing of biological motion. Perception 31, 837-853.
van Boxtel, J. J. A., & Lu, H. (2013). A biological motion toolbox for reading, displaying, and manipulating motion capture data in research settings. Journal of Vision, 13. doi:10.1167/13.12.7
Yeom, T. H., Park, Y. S., Oh, K. J., Kim, J. K., & Lee, Y, H. (1992). Korean-Wechsler adult intelligence scale manual. Seoul: Korean Guidance Press.
Yi, J. S., Ahn, Y. M., Shin, H. K., An, S. K., Joo, Y. H., Kim, S. H., et al. (2001). Reliability and validity of the Korean version of the Positive and Negative Syndrome Scale. Journal of Korean Neuropsychiatric Association, 40, 1090-1105.