ISSN : 1226-9654
편도체내에는 부신피질 자극호르몬 방출인자(corticotropin releasing factor, 이하 CRF)를 분비하는 뉴런들이 존재한다. 기존에는 CRF이 방출되면 불안 및 공포와 같은 부정적 행동결과를 초래한다고 알려져 있었으나, 최근 보상효과를 일으킨다는 상반된 주장이 제기되고 있다. 본 연구에서는 사전 경험에 따라서 CRF뉴런들의 활성화 효과가 달라질 수 있다는 가설을 검증하기 위해서 동물실험을 진행하였다. 유전자변형 동물들을 이용하여 광유전학적으로 편도체내의 CRF뉴런들을 선택적으로 활성화할 수 있도록 조작하였다. 사전에 특별한 경험이 없는 상태에서 CRF뉴런들을 활성화하였을 경우 통제집단과 비교해서 행동반응에 유의미한 차이가 관찰되지 않았다. 그러나 먹이 보상물을 이용한 도구적 조건화 훈련을 마친 뒤에 CRF뉴런들을 활성화하였을 때에는 이전 행동을 지속하게 만드는 보상효과를 유발하였다. 새로운 집단의 동물들을 대상으로 공포조건화 전후로 CRF활성화가 행동에 미치는 영향도 실험하였다. 공포를 경험하기 전에는 나타나지 않았으나, 공포기억을 형성한 후에 CRF뉴런들을 활성화하면 불안 및 기피행동을 관찰 할 수 있었다. 이러한 실험결과들은 사전 경험에 따라서 행동에 미치는 CRF의 영향이 달라지는 것을 보여준다. 따라서 편도체의 CRF뉴런들은 정서가치를 표상하는 것이 아니라, 최근에 형성한 경험 및 기억이 더 발현되도록 유도하는 기능을 하는 것으로 판단된다.
The central nucleus of the amygdala (CeA) contains a group of cells that produce a neuropeptide, corticotropin releasing factor (CRF). The literature suggests that CRF in the CeA has a negative effect on behavior, such as increased anxiety and fear. However recent studies reported a conflicting result showing a rewarding effect of CRF. To understand how CRF lead to different behavioral effects, CRF neurons in the CeA were genetically manipulated to express a light-activated cation channel, channelrhodopsin-2, using CRF-cre mice. When the animals were initially tested to press a lever for light delivery in an operant conditioning (OP) and to visit one of two compartment for light presentation in a real-time place preference task (RTPP), CRF activation did not alter animals’ behavior at all. Stimulation of CRF neurons also failed to change animals’ anxiety levels compared to their control group in an elevated plus maze (EPM). After experiencing a lever press for food rewards for 5 days, however, CRF activation in the same mice induced rewarding effects in both OP and RTPP. Using a different set of mice, it was also examined whether CRF activation after forming fear memory resulted in negative effects on behavior. Indeed, CRF activation did not produce any effects before fear conditioning, but the same manipulation significantly elevated anxiety levels in EPM and induced aversive effects in RTPP after fear conditioning. These results demonstrate that CRF neurons can exert either positive or negative impacts on behavior depending on prior experiences.
Asok, A., Draper, A., Hoffman, A. F., Schulkin, J., Lupica, C. R., & Rosen, J. B. (2018). Optogenetic silencing of a corticotropin-releasing factor pathway from the central amygdala to the bed nucleus of the stria terminalis disrupts sustained fear. Molecular Psychiatry, 23, 914-922.
Britton, K. T., Lee, G., Vale, W., Rivier, J., & Koob, G. F. (1986). Corticotropin releasing factor (CRF) receptor antagonist blocks activating and 'anxiogenic' actions of CRF in the rat. Brain Research, 369, 303-306.
Dedic, N., Kuhne, C., Jakovcevski, M., Hartmann, J., Genewsky, A. J., Gomes, K. S., Anderzhanova, E., Pohlmann, M. L., Chang, S., Kolarz, A., Vogl, A. M., Dine, J., Metzger, M. W., Schmid, B., Almada, R. C., Ressler, K. J., Wotjak, C. T., Grinevich, V., Chen, A., Schmidt, M. V., Wurst, W., Refojo, D., & Deussing, J. M. (2018). Chronic CRH depletion from GABAergic, long-range projection neurons in the extended amygdala reduces dopamine release and increases anxiety. Nature Neuroscience, 21, 803-807.
Donatti, A. F., & Leite-Panissi, C. R. (2011). Activation of corticotropin-releasing factor receptors from the basolateral or central amygdala increases the tonic immobility response in guinea pigs: an innate fear behavior. Behavioural Brain Research, 225, 23-30.
Dunn, A. J., & Berridge, C. W. (1990). Physiological and Behavioral-Responses to Corticotropin-Releasing Factor Administration - Is Crf a Mediator of Anxiety or Stress Responses. Brain Research Reviews, 15, 71-100.
Dunn, A. J., & File, S. E. (1987). Corticotropin-releasing factor has an anxiogenic action in the social interaction test. Hormones and Behavior, 21, 193-202.
Ehlers, C. L., Henriksen, S. J., Wang, M., Rivier, J., Vale, W., & Bloom, F. E. (1983). Corticotropin releasing factor produces increases in brain excitability and convulsive seizures in rats. Brain Research, 278, 332-336.
Gray, J. M., Vecchiarelli, H. A., Morena, M., Lee, T. T., Hermanson, D. J., Kim, A. B., McLaughlin, R. J., Hassan, K. I., Kuhne, C., Wotjak, C. T., Deussing, J. M., Patel, S., & Hill, M. N. (2015). Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety. Journal of Neuroscience, 35, 3879-3892.
Hartley, N. D., Gaulden, A. D., Baldi, R., Winters, N. D., Salimando, G. J., Rosas-Vidal, L. E., Jameson, A., Winder, D. G., & Patel, S. (2019). Dynamic remodeling of a basolateral-to-central amygdala glutamatergic circuit across fear states. Nature Neuroscience, 22, 2000-2012.
Heymann, G., Jo, Y. S., Reichard, K. L., McFarland, N., Chavkin, C., Palmiter, R. D., Soden, M. E., & Zweifel, L. S. (2020). Synergy of Distinct Dopamine Projection Populations in Behavioral Reinforcement. Neuron, 105, 909-920.
Jo, Y. S., Heymann, G., & Zweifel, L. S. (2018). Dopamine Neurons Reflect the Uncertainty in Fear Generalization. Neuron, 100, 916-925.
Jo, Y. S., Namboodiri, V. M. K., Stuber, G. D., & Zweifel, L. S. (2020). Persistent activation of central amygdala CRF neurons helps drive the immediate fear extinction deficit. Nature Communications, 11, 422.
Kim, J., Zhang, X., Muralidhar, S., LeBlanc, S. A., &Tonegawa, S. (2017). Basolateral to Central Amygdala Neural Circuits for Appetitive Behaviors. Neuron, 93, 1464-1479.
Koob, G. F. (1999). Corticotropin-releasing factor, norepinephrine, and stress. Biological Psychiatry, 46, 1167-1180.
Koob, G. F., Swerdlow, N., Seeligson, M., Eaves, M., Sutton, R., Rivier, J., & Vale, W. (1984). Effects of alpha-flupenthixol and naloxone on CRF-induced locomotor activation. Neuroendocrinology, 39, 459-464.
Lemos, J. C., Wanat, M. J., Smith, J. S., Reyes, B. A., Hollon, N. G., Van Bockstaele, E. J., Chavkin, C., & Phillips, P. E. (2012). Severe stress switches CRF action in the nucleus accumbens from appetitive to aversive. Nature, 490, 402-406.
Pearlman, C. A., Jr., Sharpless, S. K., & Jarvik, M. E. (1961). Retrograde amnesia produced by anesthetic and convulsant agents. Journal of Comparative and Physiological Psychology, 54(2), 109-112.
Pitts, M. W., Todorovic, C., Blank, T., & Takahashi, L. K. (2009). The central nucleus of the amygdala and corticotropin-releasing factor: insights into contextual fear memory. Journal of Neuroscience, 29, 7379-7388.
Sanford, C. A., Soden, M. E., Baird, M. A., Miller, S. M., Schulkin, J., Palmiter, R. D., Clark, M., & Zweifel, L. S. (2017). A Central Amygdala CRF Circuit Facilitates Learning about Weak Threats. Neuron, 93, 164-178.
Sara, S. J., & Devauges, V. (1989). Idazoxan, an Alpha-2Antagonist, Facilitates Memory Retrieval in the Rat. Behavioral and Neural Biology, 51, 401-411.
Sara, S. J., & Deweer, B. (1982). Memory Retrieval Enhanced by Amphetamine after a Long Retention Interval. Behavioral and Neural Biology, 36, 146-160.
Sara, S. J., Deweer, B., & Hars, B. (1980). Reticular Stimulation Facilitates Retrieval of a Forgotten Maze Habit. Neuroscience Letters, 18, 211-217.
Sutton, R. E., Koob, G. F., Le Moal, M., Rivier, J., & Vale, W. (1982). Corticotropin releasing factor produces behavioural activation in rats. Nature, 297, 331-333.
Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates secretion of corticotropin and beta-endorphin. Science, 213, 1394-1397.
Zweifel, L. S., Fadok, J. P., Argilli, E., Garelick, M. G., Jones, G. L., Dickerson, T. M., Allen, J. M., Mizumori, S. J., Bonci, A., & Palmiter, R. D. (2011). Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nature Neuroscience, 14, 620-626.