바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Hysteresis and BOLD Change in Face Categorization

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2007, v.19 no.1, pp.39-51
https://doi.org/10.22172/cogbio.2007.19.1.003


Abstract

Using fMRI, we have investigated the underlying brain mechanism for hysteresis effect revealed in face categorization. Selective activation of human brain areas, V1, V4v, and FFA to sequentially presented synthetic faces has been measured. There was a strong activation in FFA for categorizing faces, while there was no difference in activation in V1 and V4v. These results indicate that FFA might be closely related with the processing of face categorization, in addition to various face-specific information processing.

keywords
이력현상, fMRI, FFA, 얼굴범주화, hysteresis, fMRI, FFA, face categorization

Reference

1.

김정훈 (2002). 역동적 지각범주화. 한국실험 및인지심리학회 여름학술대회발표논문집, 7-11.

2.

김정훈, 김초복 (2003). 얼굴인식에 있어 방사주파수 정보의 뇌 실재성. 한국심리학회지: 실험, 15, 561-577.

3.

김정훈, 김초복, 전하정, 문성실 (2005). 전문가 학습과정에 의한 얼굴과 대상인식. 한국심리학회지: 실험, 17, 343-362.

4.

Bukach, C. M., Gauthier, I. & Tarr, M. J. (2006). Beyond faces and modularity: the power of an expertise framework. Trends in Cognitive Science, 10, 159-166.

5.

Ding, J. & Sperling, G. (2006). A gain-control theory of binocular combination. Proceedings of Natitional Academy of Science, 103, 1141-1146.

6.

Fisher, G. H. (1967). Measuring ambiguity. American Journal of Psychology, 80, 541-547.

7.

Gauthier, I., & Tarr, M. J. (1997). Becoming a “Greeble” expert: Exploring mechanisms for face recognition. Vision Research, 37(12), 1673-1682.

8.

Gauthier, I., & Tarr, M. J. (2002). Unraveling mechanisms for expert object recognition: Bridging brain activity and behavior. Journal of Experimental Psychology: Human Perception and Performance, 28(2), 431-446.

9.

Gauthier, I., Williams, P., Tarr, M. J., & Tanaka, J. (1998). Training "Greeble" experts: A framework for studying expert object recognition processes. Vision Research, Special issue on “Models of Recognition”, 38, 2401-2428.

10.

Grill-Spector, K. (2003). The neural basis of object perception. Current Opinion in Neuralbiology, 13, 1-8.

11.

Grill-Spector, K., Sayres, R., & Ress, D. (2006). High-resolution imaging reveals highly selective nonface clusters in the fusiform face area. Nature Neuroscience, 9, 1177-1185.

12.

Haxby, J. V. (2006). Fine structure in representations of faces and objects. Nature Neuroscience, 9, 1084-1086.

13.

Heekeren, H. R., Marrett, P. A., & Ungerleider, L. G. (2004). A general mechanism for perceptual decision-making in the human brain. Nature, 431, 859-862.

14.

Kanwisher, N. (2000). Domain specificity in face perception. Nature Neuroscience, 3, 759-763.

15.

Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. Journal of Neuroscience, 17, 4302-4311.

16.

Kelso, J. A. S. (1995). Dynamic patterns. MA: MIT press.

17.

Kim, J. (2002). Dynamics of face categorization, Lecture Notes in Computer Science, 2525, 511- 518.

18.

Kim, J., Kim, C., Moon, S-S., & Jeon, H. (2005). A single recognition system for faces and objects in expert-based experiments using synthetic stimuli. Annual meetings of Vision Science Society, Sarasota, Florida.

19.

Port, R. F. & van Gelder, T. (1995). Mind as Motion. MA: MIT press.

20.

Talairach, J. & Tournoux, O. (1988) Co-planar stereotaxic atlas of the human brain, New York: Thieme.

21.

Williams, D., Phillips, G., & Sekuler, R. (1986). Hysteresis in the perception of motion direction as evidence for neural cooperativity. Nature, 324, 253-255.

22.

Wilson, H. R. (1977). Hysteresis in binocular grating perception: contrast effects. Vision Research, 17, 843-851.

23.

Wilson, H. R., Loffler, G., & Wilkinson, F. (2002). Synthetic faces, face cubes, and the geometry of face space. Vision Research, 42, 2909-2923.

The Korean Journal of Cognitive and Biological Psychology