바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

회전하는 비원형물체의 접촉시간 지각

Perceiving the Time to Contact of Rotating Non-Spherical Objects

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2009, v.21 no.2, pp.73-90
https://doi.org/10.22172/cogbio.2009.21.2.002
김남균 (계명대학교)

초록

본 연구는 인간시각체계가 회전하면서 다가오는 비원형물체의 접촉시간을 탐지할 수 있는지를 규명하고자 시도되었다. Gray와 Regan(2000)은 인간시각체계가 단안정보에 입각하여 회전하며 접근하는 비원형물체의 접촉시간을 탐지할 능력이 결여되었다고 주장하였다. 하지만 그들의 연구에 사용된 물체는 타원체였으며, 그 물체는 각 시행에서 90도만을 회전하였다. 따라서 물체는 조건에 따라 원형에서 타원형으로 혹은 타원형에서 원형으로 형태가 변화하였다. 즉 Gray와 Regan은 회전하는 비원형물체가 야기할 수 있는 무한한 형태 중에서 단지 두 가지 유형에 근거하여 결론을 도출하였다. 아울러 Gray와 Regan은 내부의 결 조직이 제거된 물체들을 자극으로 사용하였으며, 그 물체들은 윤곽만 묘사되었다. 그에 반해 본 연구에서는 보다 일반적인 상황을 묘사하고자 하였다. 따라서 다양한 결 무늬를 입힌 물체들을 사용하였다. 또한 두 종류의 비원형물체가 사용되었으며, 통제물체로 원형물체가 사용되었다. 물체의 접근속도, 접촉시간, 회전방향도 함께 통제하였다. 그리고 정보가 저하된 상황 하에 다른 정보를 보완할 가능성도 함께 검증하기 위해서 지면의 결과 물체의 그림자도 함께 조작하였다. 이러한 변인들을 상대판단과제(실험 1)와 절대판단과제(실험 2)를 이용하여 검증하였다. 참가자들의 접촉시간 지각능력이 기존의 접촉시간 연구에서 보고한 결과들과 비교하였을 때 비슷하거나 더 우수하였다. 또한 접근속도와 물체의 크기에도 영향을 받음으로써 본 연구에서 관찰된 능력이 접촉시간 지각과정에서 발견된 일반적인 반응양상과 거의 다르지 않다는 사실 또한 발견되었다. 요약하면, 본 연구에서 Gray와 Regan이 내린 결론과는 상반되는 결과, 즉 인간시각체계가 회전하는 비원형물체의 접촉시간을 정확하게 지각할 수 있다는 사실을 발견하였다.

keywords
time-to-contact, local tau, non-spherical objects, surface texture, time-to-contact, local tau, non-spherical objects, surface texture, 접촉시간지각, local tau, 비원형물체, 결 조직

Abstract

Are human observers incapable of estimating the time-to-contact (TTC) of a tumbling rugby ball while watching it with a single eye, as Gray and Regan (2000) contend? Everyday experiences suggest otherwise. In Gray and Regan’s study, the oval object rotated only 90 deg so that, for a given trial, its projected shape changed either from circle to ellipse or from ellipse to circle depending on the initial orientation of the object. Thus, despite the fact that an infinite variety of optical patterns can be engendered by rotating non-spherical objects, only two types of deformation were depicted in Gray and Regan’s study. For that reason, additional studies are clearly warranted. The present study was conducted directed at perceptual capacity for estimating the TTC of rotating non-spherical objects. Two different response measures, a relative (Experiment 1) and an absolute (Experiment 2) judgment task, in conjunction with three types of objects, a sphere, a rugby ball shaped object, and a disk shaped object, were employed for this purpose. The objects were depicted as texture-mapped images. Even with the surface texture of the objects, the texture elements projected to the observation point were displaced or even disappeared and were replaced by the texture elements hidden behind due to rotation. Nevertheless, performance was accurate across all conditions of object type. That is to say, participants were as accurate in judging TTC of the two non-spherical objects as they were with the spherical object. Moreover, the effects of velocity and size were also observed, consistent with similar effects reported in other TTC studies. Taken together, the results contradicted Gray and Regan's contention and demonstrated that the human visual system is capable of perceiving TTC of rotating non-spherical objects using information extracted from the surface texture of the objects.

keywords
time-to-contact, local tau, non-spherical objects, surface texture, time-to-contact, local tau, non-spherical objects, surface texture, 접촉시간지각, local tau, 비원형물체, 결 조직

참고문헌

1.

Andersen, G. J., Cisneros, J., Atchley, P., & Saidpour, A. (1999). Speed, size, and edge-rate information for the detection of collision events. Journal of Experimental Psychology: Human Perception and Performance, 25, 256-269.

2.

Bennett, S., van der Kamp, J. Savelsbergh, G. J. P., & Davids, K. (1999). Timing a one-handed catch 1. Effects of telestereoscopic viewing. Experimental Brain Research, 129, 362-368.

3.

Bootsma, R. J., & Craig, C. M. (2002). Global and local contributions to the optical specification of time to contact: Observer sensitivity to composite tau. Perception, 31, 901-924.

4.

Bootsma, R. J., & van Wieringen, P. C. W. (1990). Timing an attacking forehand drive in table tennis. Journal of Experimental Psychology: Human Perception and Performance, 16, 21-29.

5.

Cavallo, V., & Laurent, M. (1988). Visual information and skill level in time-to-collision estimation. Perception, 17, 623-632.

6.

DeLucia, P. R. (1991). Pictorial and motion-based information for depth perception. Journal of Experimental Psychology: Human Perception and Performance, 17, 738-748.

7.

DeLucia, P. R. (2005). Does binocular disparity or familiar size information override effects of relative size on judgements of time to contact. The Quarterly Journal of Experimental Psychology, 58A, 865-886.

8.

DeLucia, P. R., & Novak, J. B. (1997). Judgments of relative time-to-contact of more than two approaching objects: Toward a method. Perception & Psychophysics, 59, 913-928.

9.

DeLucia, P. R. & Warren, R. (1994). Pictorial and motion-based depth information during active control of self-motion: Size-arrival effects on collision avoidance. Journal of Experimental Psychology: Human Perception and Performance, 20, 783-798.

10.

Flach, J. M., Warren, R., Garness, S. A., Kelly, L., & Stanard, T. (1997). Perception and control of altitude: Splay and depression angles. Journal of Experimental Psychology: Human Perception and Performance, 23, 1764-1782.

11.

Gray, R., & Regan, D. (1998). Accuracy of estimating time to collision using binocular and monocular information. Vision Research, 38, 499-512.

12.

Gray, R., & Regan, D. (2000). Estimating time to collision with a rotating nonspherical object. Vision Research, 40, 49-63.

13.

Gray, R., & Regan, D. (2004). The use of binocular time-to-contact information. In H. Hecht & G. J. P. Savelsburgh (Eds.), Time-to-contact (pp. 303-325). Amsterdam:Elsevier.

14.

Hecht, H., & Savelsbergh, G. J. P. (2004). Theories of time-to-contact judgment. In H. Hecht & G. J. P. Savelsburgh (Eds.), Time-to-contact (pp. 1-11). Amsterdam: Elsevier.

15.

Heuer, H. (1993). Estimates of time to contact based on changing size and changing target vergence. Perception, 22, 549-53.

16.

Kaiser, M. K., & Mowafy, L. (1993). Optical specification of time-to-passage: Observer's sensitivity to global tau. Journal of Experimental Psychology: Human Perception and Performance, 19, 1028-1040.

17.

Kerzel, D., Hecht, H., & Kim, N.-G. (1999). Global expansion, not global tau explains depth from global optic flow. Journal of Experimental Psychology: Human Perception and Performance, 25, 1540-1555.

18.

Kim, N.-G. (2008). Dynamic occlusion and optical flow from corrugated surfaces. Ecological Psychology, 20, 209-239.

19.

Kim, N.-G. (2009). Sensitivity to local tau's. manuscript submitted for publication.

20.

Kim, N.-G., & Grocki, M. J. (2006). Multiple sources of information and time-to-contact judgments. Vision Research, 46, 1946-1958.

21.

Lee, D. N. (1976). A theory of visual control of braking based on information about time-to-collision. Perception, 5, 437-459.

22.

Lee, D. N., Reddish, P. E., & Rand, D. T. (1991). Aerial docking by hummingbirds. Naturwissenschaften, 78, 526-527.

23.

McLeod, R. W., & Ross, H. E. (1983). Optic-flow and cognitive factors in time-to-collision estimates. Perception, 12, 417-423.

24.

Regan, D. (1997). Visual factors in catching and hitting. Journal of Sports Sciences, 15, 533-558.

25.

Rushton, S. K., & Wann, J. P. (1999). Weighted combination of size and disparity: a computational model for timing a ball catch. Nature Neuroscience, 2, 186-190.

26.

Savelsbergh, G. J. P., Whiting, H. T. A., & Bootsma, R. J. (1991). "Grasping" tau! Journal of Experimental Psychology: Human Perception and Performance, 17, 315-33.

27.

Schiff, W., & Detwiler, M. L. (1979). Information used in judging impending collision. Perception, 8. 647-58.

28.

Scott, M. A., Li, F.-X., & Davids, K. (1996). The shape of things to come: Effects of object shape and rotation on the pick-up of local tau. Ecological Psychology, 8, 343-352.

29.

Smith, M. R, H., Flach, J. M., Dittman, S. M., & Stanard, T. (2001). Monocular optical constraints on collision control. Journal of Experimental Psychology: Human Perception and Performance, 27, 395-410.

30.

Todd, J. T. (1981). Visual information about moving objects. Journal of Experimental Psychology: Human Perception and Performance, 7, 795-810.

31.

Tresilian, J. R. (1991). Empirical and theoretical issues in the perception of time to contact. Journal of Experimental Psychology: Human Perception and Performance, 17, 865-876.

32.

Tresilian, J. R. (1995). Perceptual and cognitive processes in time-to-contact estimation: Analysis of prediction-motion and relative judgment task. Perception & Psychophysics, 57, 231-245.

33.

van der Kamp, J., Savelsbergh, G., & Smeets, J. (1997). Multiple information sources in interceptive timing. Human Movement Science, 16, 780-821.

한국심리학회지: 인지 및 생물