바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

행동적 연구 사례에 근거한 시각작업기억의 이해

Understanding Visual Working Memory Based on Significant Examples of Behavioral Studies

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2011, v.23 no.1, pp.45-90
https://doi.org/10.22172/cogbio.2011.23.1.002
현주석 (중앙대학교)
  • 다운로드 수
  • 조회수

초록

시각작업기억은 3-4개 항목 정도의 객체근원적 정보를 10여초 내외동안 단지 파지하는 기억저장소로 알려져 있으며 인간의 고등인지기능을 이해하는데 있어서 중요한 정보처리체계로 간주되고 있다. 본 개관 논문은 시각작업기억의 개념적 정의 및 주요 특성을 정리하고, 경험적 검증 과정에 대한 정확한 이해를 돕기 위해 최근 시각작업기억 연구 사례에서 사용된 행동적 실험법을 상세히 소개하였다. 또한 최근 논란의 중심에 서 있는 시각작업기억 표상 논쟁을 개괄하고, 기억 연구자들의 추가적인 검증을 요구하는 주제들을 간략히 조망하였다.

keywords
시각작업기억, 시각작업기억 연구 사례, 시각작업기억 표상 논쟁, Visual Working Memory (VWM), behavioral testing paradigms, model of VWM representation

Abstract

Visual Working Memory (VWM) has been known to short-term retain 3-4 item-worth object information for around 10 seconds, and is considered important for understanding higher cognitive functions in human. The present study reviews conceptual definitions of VWM and its major properties, and introduces behavioral testing paradigms in recent VWM studies. The study also overviews topics requiring further experimental testing by VWM researchers as well as introducing the controversial debates on the model of VWM represenation.

keywords
시각작업기억, 시각작업기억 연구 사례, 시각작업기억 표상 논쟁, Visual Working Memory (VWM), behavioral testing paradigms, model of VWM representation

참고문헌

1.

현주석 (2008a). 지각과 단기 기억 수준에 발현되는 주의 효과의 공간적 연장 패턴. 인지과학, 19(3), 311‐330.

2.

현주석 (2008b). 차폐 자극이 시각 작업 기억 비교 과정에 미치는 영향. 한국심리학회지: 실험, 20(3), 167‐178.

3.

Agam, Y., Hyun, J.‐S., Danker, J. F., Zhou, F., Kahana, M., & Sekuler, R. (2009). Early Neural Signature of visual short‐term memory. NeuroImage, 44(2), 531‐536.

4.

Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short‐term memory is set both by information load and by number of objects. Psychological Science, 15, 106‐111.

5.

Alvarez, G. A., & Thomson, T. W. (2009). Overwriting and rebinding: Why feature- switch detection tasks underestimate the binding capacity of visual working memory. Visual Cognition, 17(1), 141‐159.

6.

Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence (Ed.), The Psychology of Learning and Motivation: Advances in Research and Theory Volume 2 (pp.89-195). New York: Academic Press.

7.

Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short‐term memory. Scientific American, 225(2), 82‐90.

8.

Averbach, E., & Coriel, A. S. (1961). Short‐term memory in vision. Bell System Technical Journal, 40, 309-328.

9.

Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18(7), 622-628.

10.

Awh, E., & Jonides, J. (2001). Overlapping mechanisms of attention and spatial working memory. Trends in Cognitive Science, 5(3), 119-126.

11.

Awh, E., Jonides, J., & Reuter‐Lorenz, P. A. (1998). Rehearsal in spatial working memory. Journal of Experimental Psychology: Human Perception and Performance, 24(3), 780-790.

12.

Baddeley, A. D. (1986). Working Memory. Oxford: Clarendon.

13.

Bamber, D. E. (1969). “Same”‐“different” judgments of multidimensional stimuli: Reaction times and error rates. Dissertation Abstracts International, 30(4-B).

14.

Barton, B., Ester, E. F., & Awh, E. (2009). Discrete resource allocation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 35(5), 1359‐1367.

15.

Bays, M., & Husain, M. (2009). Response to Comment on “Dynamic Shifts of Limited Working Memory Resources in Human Vision”. Science, 323, 877d.

16.

Bays, M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9(10), 1-11.

17.

Bays, M., & Husain, M. (2008). Dynamic shift of limited working memory resources in human vision. Science, 321, 851‐854.

18.

Bower, G. H., Clark, M. C., Lesgold, A. M., & Winzenz, D. (1969). Hierarchical retrieval schemes in recall of categorized word lists. Journal of Verbal Learning & Verbal Behavior, 8, 323‐343.

19.

Brady, T. J., Konkle, T., & Alvarez, G. A. (2009). Compression in visual working memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: Human Perception and Performance, 138(4), 487‐502.

20.

Breitmeyer, B. (1984). Visual Masking: An Integrative Approach. New York: Oxford University Press.

21.

Brooks, L. R. (1967). The suppression of visualization by reading. Quarterly Journal of Experimental Psychology, 19, 289-299.

22.

Brown, J. (1958). Some tests of the decay theory of immediate memory. Quarterly Journal of Experimental Psychology, 10, 12-21.

23.

Brown, R., & Kulik, J. (1977). Flashbulb Memories. Cognition, 5(1), 73-99.

24.

Cantor, J., & Engle, R. W. (1993). Working memory capacity as long‐term memory activation: An individual differences approach. Journal of Experimental Psychology: Learning, Memory & Cognition, 19(5), 1101‐1114.

25.

Cavanagh, P., & Alvarez, G. A. (2005). Tracking multiple targets with multifocal attention. Trends in Cognitive Sciences, 9(7), 349-354.

26.

Chun, M. M., & Potter, M. C. (1995). A two‐stage model for multiple target detection in rapid serial visual presentation. Journal of Experimental Psychology: Human Perception and Performance, 21, 109-127.

27.

Coltheart, M. (1980a). Iconic memory and visible persistence. Perception and Psychophysics, 27, 183‐228.

28.

Coltheart, M. (1980b). The persistence of vision. Philosophical Transactions of the Royal Society of London, B(290), 57‐69.

29.

Conrad, R. (1964). Information, acoustic confusion and memory span. British Journal of Psychology, 55(4), 1964.

30.

Cooper, L. A., & Shepard, R. N. (1973). The time required to prepare for a rotated stimulus. Memory & Cognition. Vol., 1(3), 246-250.

31.

Corkin, S. (1968). Acquisition of motor skill after bilateral medial temporal‐lobe excision. Neuropsychologia, 6(6), 255-265.

32.

Corkin, S. (2002). What's new with the amnesic patient H. M.? Nature Reviews Neuroscience, 3(2), 153‐160.

33.

Cowan, N. (1997). Attention and Memory. New York: Oxford University Press.

34.

Cowan, N. (2001). The magical number 4 in short‐term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87-185.

35.

Cowan, N. (2008). What are the differences between long‐term, short‐term, and working memory. Progress in Brain Research, 169, 323‐338.

36.

Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Ismajatulina, A., et al. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42-100.

37.

Cowan, N., & Rouder, J. N. (2009). Comment on “Dynamic Shifts of Limited Working Memory Resources in Human Vision”. Science, 323, 877c.

38.

Currie, C. B., McConkie, G. W., Carlson‐Radvansky, L. A., & Irwin, D. E. (2000). The role of the saccade target object in the perception of a visually stable world. Perception & Psychophysics, 62(4), 673-683.

39.

Delvenne, J. F., Cleeremans, A., & Laloyaux, C. (2010). Feature bindings are maintained in visual short‐term memory without sustained focused attention. Experimental Psychology, 57(2), 108-116.

40.

Deubel, H., Schneider, W. X., & Bridgemen, B. (2002). Transsaccadic memory of position and form. Progress in Brain Research, 140, 165-180.

41.

Di Lollo, V. (1980). Temporal integration in visual memory. Journal of Experimental Psychology: General, 109, 75‐97.

42.

Di Lollo, V., & Dixon, P. (1988). Two forms of persistence in visual information processing. Journal of Experimental Psychology: Human Perception and Performance, 14(4), 671-681.

43.

Dixon, P., & Shedden, J. M. (1993). On the nature of the span of apprehension. Psychological Research, 55(1), 29-39.

44.

Dodge, R. (1900). Visual perception during eye movement. Psychological Review, 7, 454-‐465.

45.

Drew, T., McCollough, A. W., & Vogel, E. K. (2006). Event‐related potential measures of visual working memory. Clinical EEG and Neuroscience, 37(4), 286-291.

46.

Enns, J. T., & Di Lollo, V. (2000). What's new in visual masking. Trends in Cognitive Sciences, 4, 345‐351.

47.

Farell, B. (1985). “Same”–“different” judgments: A review of current controversies in perceptual comparisons. Psychological Bulletin, 98, 419-456.

48.

Farell, B. (1988). Comparison requirements and attention in identicalonidentical stimulus discriminations. Journal of Experimental Psychology: Human Perception & Performance, 14(4), 707‐715.

49.

Fougnie, D., & Marois, R. (2006). Distinct capacity limits for attention and working memory. Psychological Science, 17, 526-534.

50.

Fukuda, K., Awh, E., & Vogel, E. K. (2010). Discrete capcity limits in visual working memory. Current Opinion in Neurobiology, 20, 177-182.

51.

Fukuda, K., & Vogel, E. K. (2009). Human variation in overriding attentional capture. The Journal of Neuroscience, 29(27), 8726-8733.

52.

Gajewski, D., & Brockmole, J. (2006). Feature bindings endure without attention: Evidence from an explicit recall task. Psychonomic Bulletin & Review, 13(4), 581-587.

53.

Gold, J. M., Murray, R. F., Sekuler, A. B., Bennett, P. J., & Sekuler, R. (2005). Visual memory decay is deterministic. Psychological Science, 16, 769-775.

54.

Gold, J. M., Wilk, C., McMahon, R., & Luck, S. J. (2003). Working memory for visual features and conjunctions in schizophrenia. Journal of Abnormal Psychology, 112, 61-71.

55.

Green, D., & Swets, J. (1966). Signal Detection Theory and Psychophysics. New York: Wiley.

56.

Green, D. M. (1961). Detection of auditory sinusoids of uncertain frequency. Journal of the Acoustical Society of America, 33, 897-903.

57.

Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15, 1176‐1194.

58.

Halford, G. S., Cowan, N., & Andrews, G. (2007). Separating cognitive capacity from knowledge: A new hypothesis. Trends in Cognitive Science, 11(6), 236‐242.

59.

Hallett, P. E., & Lightstone, A. D. (1976). Saccadic eye movements towards stimuli triggered by prior saccades. Vision Research, 16(1), 99-106.

60.

Han, S.‐H., & Kim, M.‐S. (2004). Visual search does not remain efficient when executive working memory is working. Psychological Science, 15, 623-628.

61.

Henderson, J. M., & Hollingworth, A. (1999). High‐level scene perception. Annu Rev Psychol, 50, 243-271.

62.

Hollingworth, A. (2003). Failures of retrieval and comparison constrain change detection in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 29, 388-403.

63.

Hollingworth, A., & Henderson, J. M. (2002). Accurate visual memory for previously attended objects in natural scenes. Journal of Experimental Psychology: Human Perception and Performance, 28, 113-136.

64.

Hollingworth, A., & Henderson, J. M. (2004). Sustained change blindness to incremental scene rotation: A dissociation between explicit change detection and visual memory. Perception & Psychophysics, 66(5), 800-807.

65.

Hollingworth, A., Richard, A. M., & Luck, S. J. (2008). Understanding the function of visual short‐term memory in human cognition: Transsaccadic memory, object correspondence, and gaze correction. Journal of Experimental Psychology: General, 137(1), 163-181.

66.

Horowitz, T. S., & Wolfe, J. M. (1998). Visual search has no memory. Nature, 394, 575-577.

67.

Horowitz, T. S., & Wolfe, J. M. (2003). Memory for rejected distractors in visual search? Visual Cognition, 10(3), 257-298.

68.

Hyun, J.‐S., Hollingworth, A., & Luck, S. J. (2006). How change‐detection is related to visual search: A change in a remembered object is like a simple feature. [Abstract]. Journal of Vision, 6(6), 985a.

69.

Hyun, J.‐S., & Luck, S. J. (2007). Visual working memory as the substrate for mental rotation. Psychonomic Bulletin & Review, 14(1), 154‐158.

70.

Hyun, J.‐S., Woodman, G. F., Vogel, E. K., Hollingworth, A., & Luck, S. J. (2009). The comparison process of visual working memory representations with perceptual inputs. Journal of Experimental Psychology: Human Perception and Performance, 35(4), 1140‐1160.

71.

Hyun, J.‐S., Woodman, G. F., Vogel, E. K., Niese, A. T., & Luck, S. J. (2003). How are visual inputs compared with memory representations in the change‐detection paradigm? [Abstract]. Journal of Vision, 3(9), 322a.

72.

Irwin, D. E. (1991). Information integration across saccadic eye movements. Cognitive Psychology, 23(3), 420-456.

73.

Irwin, D. E. (1992a). Memory for position and identity across eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 307-317.

74.

Irwin, D. E. (1992b). Perceiving an integrated visual world. In D. E. Meyer & S. Kornblum (Eds.), Attention and Performance XIV: Synergies in Experimental Psycholoyg, Artificial Intelligence, and Cognitive Neuroscience (pp.121-142). Cambridge, MA: MIT Press.

75.

Irwin, D. E., & Andrews, R. V. (1996). Integration and accumulation of information across saccadic eye movements. In T. Inui & J. L. McClelland (Eds.), Attention and Performance XVI (pp.125-155). Cambridge, MA: MIT Press.

76.

Irwin, D. E., & Yeomans, J. M. (1986). Sensory registration and informational persistence. Journal of Experimental Psychology: Human Perception and Performance, 12, 343‐360.

77.

Irwin, D. E., Zacks, J. L., & Brown, J. S. (1990). Visual memory and the perception of a stable visual environment. Perception and Psychophysics, 47, 35-46.

78.

Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organization of visual short‐term memory. Journal of Experimental Psychology: Learning, Memory & Cognition, 2, 683‐702.

79.

Johnson, J. S., Hollingworth, A., & Luck, S. J. (2008). The role of attention in the maintenance of feature bindings in visual short‐term memory. Journal of Experimental Psychology: Human Perception and Performance, 34(1), 41-55.

80.

Jolicoeur, P., & Dell' Acqua, R. (1998). The demonstration of short‐term consolidation. Cognitive Psychology, 36(2), 138-202.

81.

Jonides, J., Irwin, D. E., & yantis, S. (1982). Integrating visual information from successive fixations. Science, 215, 192-194.

82.

Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S. (2008). The mind and brain of short‐term memory. Annual Review of Psychology, 59, 193-224.

83.

Kahana, M., Zhou, F., Geller, A., & Sekuler, R. (2007). Lure similarity affects visual episodic recognition: Detailed tests of a noisy exemplar model. Memory & Cognition, 35(6), 1222-1232.

84.

Kahana, M. J., & Sekuler, R. (2002). Recognizing spatial patterns: a noisy examplar approach. Vision Research, 42, 2177-2192.

85.

Karlsen, P. J., Allen, R. J., Baddeley, A. D., & HItch, G. J. (2010). Binding across space and time in visual working memory. Memory & Cognition, 38, 292‐303.

86.

Lin, P.‐H., & Luck, S. J. (2009). The influence of similarity on visual working memory representations. Visual Cognition, 17(3), 356-372.

87.

Logie, R. H. (1986). Visuo‐spatial processing in working memory. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 38A(2), 229-247.

88.

Luck, S. J. (2008). Visual short‐term memory. In S. J. Luck & A. Hollingworth (Eds.), Visual Memory: Oxford University Press.

89.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281.

90.

Luck, S. J., & Vogel, E. K. (2001). Multiple sources of interference in dual‐task performance: The cases of the attentional blink and the psychological refractory period. In K. L. Shapiro (Ed.), The Limits of Attention (pp.124-140). London: Oxford University Press.

91.

Luck, S. J., Vogel, E. K., & Shapiro, K. L. (1996). Word meanings can be accessed but not reported during the attentional blink. Nature, 382, 616-618.

92.

Matin, E. (1974). Saccadic suppression: A review and an analysis. Psychological Bulletin, 81, 899-917.

93.

McConkie, G. W., & Hogabaum, T. W. (1985). Eye position and word identification in reading. In R. Groner, G. W. McConkie & C. Menz (Eds.), Eye Movements and Human Information Processing. Amsterdam: North- Holland Press.

94.

McConkie, G. W., & Zola, D. (1979). Is visual information integrated across successive fixations in reading? Perception & Psychophysics, 25(3), 221-224.

95.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81-97.

96.

Mitroff, S. R., & Scholl, B. J. (2004). Seeing the disappearance of unseen objects. Perception, 33(10), 1267-1273.

97.

Mitroff, S. R., Simons, D. J., & Levin, D. T. (2004). Nothing compares 2 views: change blindness can occur despite preserved access to the changed information. Perception and Psychophysics, 66, 1268-1281.

98.

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar‐based random walk model of speeded classification. Psychological Review, 104(2), 266-300.

99.

Oksama, L., & Hyona, J. (2004). Is multiple object tracking carried out automatically by an early vision mechanism independent of higher‐order cognition? An individual difference approach. Visual Cognition, 11(5), 631-671.

100.

Palmer, S. E. (1999). Vision Science: Photons to phenomenology. Cambridge, MA: MIT Press.

101.

Parr, W. V. (1992). Delayed matching‐to‐sample performance as a measure of human visuospatial working memory. Bulletin of the Psychonomic Society, 30(5), 369‐372.

102.

Pashler, H. (1988). Familiarity and visual change detection. Perception and Psychophysics, 44, 369-378.

103.

Peterson, L. R., & Peterson, M. J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193-198.

104.

Peterson, S., Kramer, A. F., Wang, R. F., Irwin, D. E., & McCarley, J. S. (2001). Visual search has memory. Psychological Science, 12(4), 287-292.

105.

Phillips, W. A. (1971). Does familiarity affect transfer from an iconic to a short‐term memory? Perception and Psychophysics, 10(3), 153-157.

106.

Phillips, W. A. (1974). On the distinction between sensory storage and short‐term visual memory. Perception and Psychophysics, 16, 283-290.

107.

Pylyshyn, Z. (1989). The role of location indexes in spatial perception: A sketch of the FINST spatial‐index model. 1989. Cognition, 32(1), 65-97.

108.

Pylyshyn, Z. W. (2001). Visual indexes, preconceptual objects, and situated vision. Cognition, 80(1-2), 127-158.

109.

Pylyshyn, Z. W. (2004). Some puzzling findings in multiple object tracking: I. Tracking without keeping track of object identities. Visual Cognition, 11(7), 801-822.

110.

Rayner, K. (1998). Eye movements in reading and information processing: Twenty years of research. Psychological Bulletin, 124, 372-422.

111.

Rayner, K., McConkie, G. W., & Ehrlich, S. (1978). Eye movements and integrating information across fixations. Journal of Experimental Psychology: Human Perception & Performance, 4(4), 529-544.

112.

Rensink, R. A. (2000a). The dynamic representation of scences. Visual Cognition, 7, 17-42.

113.

Rensink, R. A. (2000b). Visual search for change: A probe into the nature of attentional processing. Visual Cognition, 7, 345-376.

114.

Rensink, R. A. (2002). Change detection. Annual Review of Psychology, 53, 245-277.

115.

Rensink, R. A., O'Regan, J. K., & Clark, J. J. (1997). To see or not to see: The need for attention to perceive changes in scenes. Psychological Science, 8, 368-373.

116.

Rensink, R. A., O'Regan, J. K., & Clark, J. J. (2000). On the failure to detect changes in scenes across brief interruptions. Visual Cognition, 7(1-3), 127-145.

117.

Richard, W. (1968). Saccadic suppression. The Optical Society of America, 59(5), 617-623.

118.

Ross, J., Burr, D., & Morrone, C. (1996). Suppression of the magnocellular visual pathway during saccades. Behavior and Brain Research, 80, 1-8.

119.

Rouder, J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C., & Pratte, M. S. (2008). An assessment of fixed‐capacity models of visual working memory. Procedings of the National Academy of Science, 105(16), 5975-5979.

120.

Saiki, J. (2002). Multiple‐object permanence tracking: limitation in maintenance and transformation of perceptual objects. Progress in Brain Research, 140, 133-148.

121.

Saiki, J. (2003). Spatiotemporal characteristics of dynamic feature binding in visual working memory. Vision Research, 43, 2107-2123.

122.

Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and involuntary attentional control of visual working memory. Perception and Psychophysics, 64, 754-763.

123.

Scholl, B. J., Pylyshyn, Z. W., & Feldman, J. (2001). What is a visual object? Evidence from target merging in multiple object tracking. Cognition, 80(1-2), 159-177.

124.

Sekuler, R. W., & Abrams, M. (1968). Visual sameness: A choice time analysis of pattern recognition processes. Journal of Experimental Psychology, 77, 232-238.

125.

Shepard, R. N., & Metzler, J. (1971). Mental Rotation of three‐dimensional objects. Science(171), 701-703.

126.

Shepard, S., & Metzler, D. (1988). Mental rotation: Effects of dimensionality of objects and type of task. Journal of Experimental Psychology: Human Perception & Performance, 14(1), 3-11.

127.

Simons, D. J., & Chabris, C. F. (1999). Gorillas in our midst: Sustained inattentional blindness for dynamic events. Percpeption, 28, 1059-1074.

128.

Simons, D. J., & Levin, D. T. (1997). Change blindness. Trends in Cognitive Sciences, 1, 261-267.

129.

Simons, D. J., & Rensink, R. A. (2005). Change blindness: Past, present, and future. Trends in Cognitive Sciences, 9, 16-20.

130.

Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs, 74, (Whole No. 498).

131.

Sternberg, S. (1966). High‐speed scanning in human memory. Science, 153, 652-654.

132.

Sternberg, S. (1969). Memory scanning: Mental processes revealed by reaction time experiments. American Scientist, 57, 421-457.

133.

Taylor, D. A. (1976). Effect of identity in the multiletter matching task. Journal of Experimental Psychology: Human Perception & Performance, 2(3), 417-428.

134.

Treisman, A. (1986). Features and objects in visual processing. Scientific American, 255(5), 114B -125.

135.

Treisman, A. (1988). Features and objects: The fourteenth Bartlett memorial lecture. Quarterly Journal of Experimental Psychology, 40, 201-237.

136.

Treisman, A., & Gelade, G. (1980). A feature -integration theory of attention. Cognitive Psychology, 12, 97-136.

137.

Treisman, A., & Sato, S. (1990). Conjunction search revisited. Journal of Experimental Psychology: Human Perception and Performance, 16, 459-478.

138.

Treisman, A., & Zhang, W. (2006). Location and binding in visual working memory. Memory & Cognition, 34, 1704-1719.

139.

Tulving, E., & Pearlstone, Z. (1966). Availability versus accessibility of information in memory for words. Journal of Verbal Learning & Verbal Behavior, 5, 381‐391.

140.

Viswanathan, S., Perl, D. R., Visscher, K. M., Kahana, M., & Sekuler, R. (2010). Homogeneity computation: How interitem similarity in visual short‐term memory alters recogntiion. Psychonomic Bulletin & Review, 17(1), 59-65.

141.

Vogel, E. K., & Luck, S. J. (2002). Delayed working memory consolidation during the attentional blink. Psychonomic Bulletin & Review, 9, 739-743.

142.

Vogel, E. K., Luck, S. J., & Shapiro, K. L. (1998). Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. Journal of Experimental Psychology: Human Perception and Performance, 24, 1656-1674.

143.

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748-751.

144.

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005a). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500-503.

145.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 27, 92-114.

146.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2005b). Pushing around the locus of selection: Evidence for the flexible‐selection hypothesis. Journal of Cognitive Neuroscience, 17, 1907-1922.

147.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32(6), 1436-1451.

148.

Wheeler, M., & Treisman, A. M. (2002). Binding in short‐term visual memory. Journal of Experimental Psychology: General, 131, 48-64.

149.

Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4, 1120-1135.

150.

Wolfe, J., Alvarez, G. A., & Horowitz, T. S. (2000). Attention is fast but volition is slow. Nature, 406, 691.

151.

Wolfe, J. M. (1998). What can 1 million trials tell us about visual search? Psychological Science, 9, 33-39.

152.

Woodman, G. F., & Luck, S. (2007). Do the contents of visual working memory automatically influence attentional selection during visual search? Journal of Experimental Psychology: Human Perception and Performance, 33(2), 363‐377.

153.

Woodman, G. F., & Luck, S. J. (2003). Dissociations among attention, perception, and awareness during object‐substitution masking. Psychological Science, 14, 605-111.

154.

Woodman, G. F., & Luck, S. J. (2004). Visual search is slowed when visuospatial working memory is occupied. Psychonomic Bulletin & Review, 11, 269-274.

155.

Woodman, G. F., & Vogel, E. K. (2005). Fractionating working memory: Consolidation and maintenance are independent processes. Psychological Science, 16(2), 106-113.

156.

Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12, 219-224.

157.

Zhang, W., & Luck, S. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20(4), 423-428.

158.

Zhang, W., & Luck, S. J. (2003). Slot‐like versus continuous representations in visual working memory. Journal of Vision, 3, 681a.

159.

Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233-235.

160.

Zhou, F., Kahana, M. J., & Sekuler, R. (2004). Short‐term episodic memory for visual textures: A roving probe gathers some memory. Psychological Science, 15, 112-118.

한국심리학회지: 인지 및 생물