바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

  • P-ISSN1226-9654
  • E-ISSN2733-466X
  • KCI

초등학교 2학년 아동의 대략적 수 민감도와 영역 별 수학 성취도 간의 관계에 대한 단기 종단 연구

A short-term longitudinal study of the relationship between 2nd graders’ approximate number acuity and achievement in different domains of mathematics

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2015, v.27 no.3, pp.481-504
https://doi.org/10.22172/cogbio.2015.27.3.007
장세림 (중앙대학교 심리학과)
김나래 (중앙대학교 심리학과)
조수현 (중앙대학교)

초록

대략적 수 민감도(이하 수 민감도)는 수량을 대략적으로 추정, 비교 및 조작할 수 있는 인지적 능력을 의미한다. 수 민감도가 수학 성취도의 근간이 된다는 이론이 제기되어 이를 검증하기 위한 연구가 활발히 이루어지고 있다. 이 이론을 지지하는 여러 선행 연구에서는 아동의 수 민감도가 수학 성취도와 유의미한 상관관계가 있음을 보고하였다. 하지만, 수 민감도와 아동의 수학 성취도의 관계성에 대한 연구들은 주로 수 개념과 산술 영역을 중심으로 이루어졌으며 기하학 등 다양한 수학의 하위 영역들을 고려하지 않았다. 따라서 이 이론이 수학의 다양한 영역으로 일반화될 수 있는지 확인되어야 한다. 또한 일부 연구자들은 수 민감도와 수학 성취도의 관계성이 온전히 인지 억제 능력에 의해 매개된다고 주장하고 있어 이러한 반론에 대한 검증 작업이 필요하다. 본 연구에서는 아동의 수 민감도와 수학 성취도 간의 관계성을 영역 별로 나누어 단기 종단적으로 분석하였다. 연구 대상은 수에 대한 이해와 수학적 인지 기능이 급속도로 발달하는 초등학교 2학년 학생들로, 3개월의 간격을 두고 두 차례 실험을 실시하였다. 실험 결과, 두 검사 시기에서 모두 수 민감도와 ‘수 개념 및 산술’ 영역 측정치는 통계적으로 유의한 상관관계가 있었다. ‘도형’ 영역의 성취도는 2차 검사 시기에서만 수 민감도와 유의한 상관관계를 나타냈다. 한편, 인지 억제 능력에 대한 요구가 높았던 과제를 통해 측정된 수 민감도와 수학 성취도 간의 관계성은 유의하지 않았다. 이러한 결과는 수 민감도와 수학 성취도와의 관계성이 비단, ‘수 개념과 연산’ 뿐 아니라, ‘기하학’ 등 다양한 수학의 영역으로 일반화될 가능성을 제시하며 일부 연구자들의 주장과 달리 수 민감도와 수학 성취도의 관계성은 인지 억제 능력에 의해 매개되는 것이 아님을 확인시켜 준다.

keywords
대략적 수 민감도, 수량, 수학 성취도, 개인차, 인지 억제, 단기 종단 연구, approximate number sense, numerical cognition, mathematical achievement, individual difference, cognitive control, short-term longitudinal study

Abstract

Approximate number sense (ANS) refers to the ability to approximately estimate and operate upon large numerosity. There have been reports on the correlation between ANS acuity and mathematical achievement supporting the hypothesis that ANS serves as a basic foundation for formal mathematical achievement. However, previous developmental studies mainly focused on ‘Number Concept’ and ‘Arithmetic’ scores and did not differentiate between different domains of mathematics. Therefore, the current study investigated whether the relationship between ANS acuity and math ability differs by the domain of mathematics. In addition, we aimed to test the argument raised by some researchers stating that the relationship between ANS acuity and mathematical achievement is entirely mediated by cognitive control ability. Second graders were tested twice on their ANS acuity and math achievement with a 3-month interval. A number comparison task using a pair of dot arrays was used to measure ANS acuity. ANS acuity was significantly correlated with ‘Number Concept & Arithmetic’ at both testing periods. ‘Geometry’ was significantly correlated with ANS acuity in the second testing session but not in the first. On the other hand, ANS measured under high requirement for cognitive control did not correlate with any measure of math achievement. These results demonstrate that the correlation between ANS and math achievement can be generalized to mathematical domains including ‘Number Concept’, ‘Arithmetic’ and ‘Geometry’. Furthermore, the relationship between ANS acuity and mathematical achievement does not seem to be mediated by cognitive control ability in any domain of mathematics.

keywords
대략적 수 민감도, 수량, 수학 성취도, 개인차, 인지 억제, 단기 종단 연구, approximate number sense, numerical cognition, mathematical achievement, individual difference, cognitive control, short-term longitudinal study

참고문헌

1.

박경숙, 김계옥, 송영준, 정동영, 정인숙 (2008). 기초학력검사(KISE-BAAT). 안산: 국립특수교육원.

2.

조수현 (2013). 수 감각의 인지신경학적 기반에 관한 연구 개관. 인지 과학, 24(3), 271- 300.

3.

Agrillo, C., Piffer, L., & Adriano, A. (2013). Individual differences in non-symbolic numerical abilities predict mathematical achievements but contradict ATOM. Behavioral and Brain Functions, 9(1), 26.

4.

Ansari, D., Dhital, B., & Siong, S. C. (2006). Parametric effects of numerical distance on the intraparietal sulcus during passive viewing of rapid numerosity changes. Brain Research, 1067(1), 181-188.

5.

Barth, H., La Mont, K., Lipton, J., & Spelke, E. S. (2005). Abstract number and arithmetic in preschool children. Proceedings of the National Academy of Sciences of the United States of America, 102(39), 14116-14121.

6.

Bonny, J. W., & Lourenco, S. F. (2013). The approximate number system and its relation to early math achievement: Evidence from the preschool years. Journal of Experimental Child Psychology, 114(3), 375-388.

7.

Brannon, E. M. (2006). The representation of numerical magnitude. Current Opinion in Neurobiology, 16(2), 222-229.

8.

Bueti, D., & Walsh, V. (2009). The parietal cortex and the representation of time, space, number and other magnitudes. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1525), 1831-1840.

9.

Cohen, J. (2013). Statistical power analysis for the behavioral sciences.: Academic press.

10.

Cohen Kadosh, R., Henik, A., Rubinsten, O., Mohr, H., Dori, H., van de Ven, V., ..., & Linden, D. E. (2005). Are numbers special?: The comparison systems of the human brain investigated by fMRI. Neuropsychologia, 43(9), 1238-1248.

11.

Dehaene, S. (1996). The organization of brain activations in number comparison: Event- related potentials and the additive-factors method, Journal of Cognitive Neuroscience, 8(1), 47-68.

12.

Dehaene, S. (2007). Symbols and quantities in parietal cortex: Elements of a mathematical theory of number representation and manipulation. In P. Haggard & Y. Rossetti (Eds.) Attention & performance XXII. Sensori- motor foundations of higher cognition. (pp. 527- 574). Cambridge, MA: Harvard University Press.

13.

Dehaene, S. (2009). Origins of mathematical intuitions. Annals of the New York Academy of Sciences, 1156(1), 232-259.

14.

Dehaene, S. (2011). The number sense: How the mind creates mathematics: OUP USA.

15.

Dehaene, S., Molko, N., Cohen, L., & Wilson, A. J. (2004). Arithmetic and the brain. Current Opinion in Neurobiology, 14(2), 218-224.

16.

Dehaene, S., Spelke, E., Pinel, P., Stanescu, R., & Tsivkin, S. (1999). Sources of mathematical thinking: Behavioral and brain-imaging evidence. Science, 284(5416), 970-974.

17.

DeWind, N. K., & Brannon, E. M. (2012). Malleability of the approximate number system: Effects of feedback and training. Frontiers in Human Neuroscience, 6, 68.

18.

Fuhs, M. W., & McNeil, N. M. (2013). ANS acuity and mathematics ability in preschoolers from low‐income homes: Contributions of inhibitory control. Developmental Science, 16(1), 136-148.

19.

Geary, D. C. (2007). An evolutionary perspective on learning disability in mathematics. Developmental Neuropsychology, 32(1), 471-519.

20.

Gebuis, T., & Gevers, W. (2011). Numerosities and space; indeed a cognitive illusion! A reply to de Hevia and Spelke (2009). Cognition, 121, 248-252.

21.

Gebuis, T., & Reynvoet, B. (2011). Generating nonsymbolic number stimuli. Behavior Research Methods, 43(4), 981-986.

22.

Gilmore, C., Attridge, N., Clayton, S., Cragg, L., Johnson, S., Marlow, N., ..., & Inglis, M. (2013). Individual differences in inhibitory control, not non-verbal number acuity, correlate with mathematics achievement. PLoS One, 8(6), e67374.

23.

Gilmore, C. K., McCarthy, S. E., & Spelke, E. S. (2010). Non-symbolic arithmetic abilities and mathematics achievement in the first year of formal schooling. Cognition, 115(3), 394-406.

24.

Guillaume, M., Nys, J., & Mussolin, C. (2013). Differences in the acuity of the Approximate Number System in adults: The effect of mathematical ability. Acta Psychologica, 144(3), 506-512.

25.

Halberda, J., & Feigenson, L. (2008). Developmental change in the acuity of the “Number Sense”: The Approximate Number System in 3-, 4-, 5-, and 6-year-olds and adults. Developmental Psychology, 44(5), 1457- 1465.

26.

Halberda, J., Mazzocco, M., & Feigenson, L. (2008). Individual differences in non-verbal number acuity correlate with maths achievement. Nature, 455(7213), 665-668.

27.

Hauser, M. D., Tsao, F., Garcia, P., & Spelke, E. S. (2003). Evolutionary foundations of number: Spontaneous representation of numerical magnitudes by cotton-top tamarins. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1523), 1441-1446.

28.

Hurewitz, F., Gelman, R,., & Schnitzer, B. (2006). Sometimes area counts more than number. Proceedings of the National Academy of Sciences, 103(51), 19599-19604.

29.

Inglis, M., Attridge, N., Batchelor, S., & Gilmore, C. (2011). Non-verbal number acuity correlates with symbolic mathematics achievement: But only in children. Psychonomic Bulletin & Review, 18(6), 1222-1229.

30.

Izard, V., Sann, C., Spelke, E. S., & Streri, A. (2009). Newborn infants perceive abstract numbers. Proceedings of the National Academy of Sciences, 106(25), 10382-10385.

31.

Kucian, K., Grond, U., Rotzer, S., Henzi, B., Schönmann, C., Plangger, F., ..., & von Aster, M. (2011). Mental number line training in children with developmental dyscalculia. Neuroimage, 57(3), 782-795.

32.

Kuhl, P. K. (2004). Early language acquisition: Cracking the speech code. Nature Reviews Neuroscience, 5(11), 831-843.

33.

Leibovich, T., & Henik, A. (2014). Comparing performance in discrete and continuous comparison tasks. The Quarterly Journal of Experimental Psychology, 67(5), 899-917.

34.

Libertus, M. E., & Brannon, E. M. (2010). Stable individual differences in number discrimination in infancy. Developmental Science, 13(6), 900- 906.

35.

Libertus, M. E., Feigenson, L., & Halberda, J. (2011). Preschool acuity of the approximate number system correlates with school math ability. Developmental Science, 14(6), 1292-1300.

36.

Libertus, M. E., Feigenson, L., & Halberda, J. (2013). Is approximate number precision a stable predictor of math ability? Learning and Individual Differences, 25, 126-133.

37.

Lipton, J. S., & Spelke, E. S. (2003). Origins of number sense large-number discrimination in human infants. Psychological Science, 14(5), 396- 401.

38.

Lourenco, S. F., Bonny, J. W., Fernandez, E. P., & Rao, S. (2012). Nonsymbolic number and cumulative area representations contribute shared and unique variance to symbolic math competence. Proceedings of the National Academy of Sciences, 109(46), 18737-18742.

39.

Mazzocco, M., Feigenson, L., & Halberda, J. (2011a). Impaired acuity of the approximate number system underlies mathematical learning disability (dyscalculia). Child Development, 82(4), 1224-1237.

40.

Mazzocco, M., Feigenson, L., & Halberda, J. (2011b). Preschoolers' precision of the approximate number system predicts later school mathematics performance. PLoS One, 6(9), e23749.

41.

Mussolin, C., Mejias, S., & Noël, M. P. (2010). Symbolic and nonsymbolic number comparison in children with and without dyscalculia. Cognition, 115(1), 10-25.

42.

Park, J., & Brannon, E. M. (2013). Training the Approximate Number System Improves Math Proficiency. Psychological Science, 24(10), 2013- 2019.

43.

Park, J., & Brannon, E. M. (2014). Improving arithmetic performance with number sense training: An investigation of underlying mechanism. Cognition, 133(1), 188-200.

44.

Piazza, M. (2010). Neurocognitive start-up tools for symbolic number representations. Trends in Cognitive Sciences, 14(12), 542-551.

45.

Piazza, M., Facoetti, A., Trussardi, A. N., Berteletti, I., Conte, S., Lucangeli, D., ..., & Zorzi, M. (2010). Developmental trajectory of number acuity reveals a severe impairment in developmental dyscalculia. Cognition, 116(1), 33-41.

46.

Pica, P., Lemer, C., Izard, V., & Dehaene, S. (2004). Exact and approximate arithmetic in an Amazonian indigene group. Science, 306(5695), 499-503.

47.

Pinel, P., Le Clec'H, G., van de Moortele, P. -F., Naccache, L., Le Bihan, D., & Dehaene, S. (1999). Event-related fMRI analysis of the cerebral circuit for number comparison. NeuroReport, 10(7), 1473-1479.

48.

Price, G. R., Holloway, I., Räsänen, P., Vesterinen, M., & Ansari, D. (2007). Impaired parietal magnitude processing in developmental dyscalculia. Current Biology, 17(24), R1042- R1043.

49.

Raven, J. (2000). The Raven's progressive matrices: Change and stability over culture and time. Cognitive Psychology, 41(1), 1-48.

50.

Räsänen, P., Salminen, J., Wilson, A. J., Aunio, P., & Dehaene, S. (2009). Computer-assisted intervention for children with low numeracy skills. Cognitive Development, 24, 450-472.

51.

Sasanguie, D., Göbel, S. M., Moll, K., Smets, K., & Reynvoet, B. (2013). Approximate number sense, symbolic number processing, or number- space mappings: What underlies mathematics achievement?. Journal of Experimental Child Psychology, 114(3), 418-431.

52.

Stanescu-Cosson, R., Pinel, P., van de Moortele, P. F., Le Bihan, D., Cohen, L., & Dehaene, S. (2000). Understanding dissociations in dyscalculia. Brain, 123(11), 2240-2255.

53.

Starr, A., Libertus, M. E., & Brannon, E. M. (2013). Number sense in infancy predicts mathematical abilities in childhood. Proceedings of the National Academy of Sciences, 110(45), 18116-18120.

54.

Szűcs, D., Nobes, A., Devine, A., Gabriel, F. C., & Gebuis, T. (2013). Visual stimulus parameters seriously compromise the measurement of approximate number system acuity and comparative effects between adults and children. Frontiers in Psychology, 4, 444.

55.

Tsao, F. M., Liu, H. M., & Kuhl, P. K. (2004). Speech perception in infancy predicts language development in the second year of life: A longitudinal study. Child Development, 75(4), 1067-1084.

56.

Van Opstal, F., Gevers, W., De Moor, W., & Verguts, T. (2008). Dissecting the symbolic distance effect: Comparison and priming effects in numerical and nonnumerical orders. Psychonomic Bulletin & Review, 15(2), 419-425.

57.

Walsh, V. (2003). A theory of magnitude: Common cortical metrics of time, space and quantity. Trends in Cognitive Sciences, 7(11), 483-488.

58.

Xu, F., & Spelke, E. S. (2000). Large number discrimination in 6-month-old infants. Cognition, 74(1), B1-B11.

59.

Xu, F., Spelke, E. S., & Goddard, S. (2005). Number sense in human infants. Developmental Science, 8(1), 88-101.

한국심리학회지: 인지 및 생물