ISSN : 1226-9654
본 연구는 한 위치에서 반복 점멸하는 자극이 정지된 큰 물체에 인접하여 제시될 때, 운동 중첩을 매개로 가현운동이 지각될 수 있는지를 알아보았다. 실험 1에서는 운동 중첩의 지각 가능성을 조작하기 위해, 양안부등 단서를 변화시켜 점멸자극을 삼차원 깊이상에서 가림막 뒤(운동 중첩 가능 조건), 혹은 앞(운동 중첩 불가능 조건)에 제시하였다. 실험 1 결과, 점멸 자극이 가림막 앞에 제시될 때보다 뒤에 제시될 때 가현운동 지각 비율이 높았다. 실험 1에서 관찰한 가현운동 지각 경향성이 실제로 운동 중첩을 매개로 하는지를 확인하기 위해, 실험 2에서는 가현운동과 관련된 간접적 지표를 측정하였다. 점진적 크기 변화자극과 불연속 점멸 자극을 제시하고, 참가자들에게 자극의 크기 변화가 "점진적", 혹은 "불연속적"으로 지각되었는지 판단하도록 하였다. 실험 2 결과 자극이 가림막 뒤에 제시되는 운동 중첩 가능 조건에서 가림막 앞에 제시되는 조건보다 "점진적"이라고 응답한 비율이 높았다. 본 연구의 결과는 가림막 뒤에서 지각된 물체의 무형 표상이 가현운동의 대응 문제 해결에 이용되면, 한 물체의 제자리 점멸 시퀀스가 가현운동으로 지각될 수 있음을 시사한다.
The current study examined whether a single object repeatedly flashing on and off in place can give rise to a percept of apparent motion when it is presented adjacent to a large occluder behind which an amodal representation can be formed. In Experiment 1, we manipulated the possibility of kinetic occlusion by placing a blinking object behind or in front of a large occluder in a stereoscopic 3D display. The results of Experiment 1 revealed that apparent motion rating was higher when a blinking object was presented behind the occluder than when it was in front. In order to figure out whether apparent motion found in Experiment 1 was actually mediated by kinetic occlusion, an indirect index potentially related to apparent motion was measured using a new experimental task: Participants observed a display involving either a gradual or sudden change of an object in size and reported whether this change appeared gradual or sudden. The results of Experiment 2 revealed that the proportion of the gradual change response was higher when a blinking object was presented behind the occluder than when it was in front. This study suggests that even a single object flashing on and off in place can generate apparent motion when its coming into and going out of existence is perceived to come into and go out of sight while continuing to exist behind an occluder.
Anstis, S. M., & Ramachandran, V. S. (1985). Kinetic occlusion by apparent movement. Perception, 14, 145-149.
Blake, R., Ahlström, U., & Alais, D. (1999). Perceptual priming to invisible motion. Psychological Science, 10, 145-150.
Brainard, D. H. (1997). The Psychophysics Toolbox. Spatial Vision, 10, 433-436.
Burke, L. (1952). On the tunnel effect. Quarterly Journal of Experimental Psychology, 4, 121-138.
Chen, Y. C., & Scholl, B. J. (2016). The perception of history: Seeing causal history in static shapes induces illusory motion perception. Psychological Science, 27, 923-930.
Dawson, M. R. (1991). The how and why of what went where in apparent motion: modeling solutions to the motion correspondence problem. Psychological Review, 98, 569-603.
Ekroll, V., Faul, F., & Golz, J. (2008). Classification of apparent motion percepts based on temporal factors. Journal of Vision, 8, 31-31.
Green, M. (1986). What determines correspondence strength in apparent motion?. Vision Research, 26, 599-607.
Kim, S.-H., Feldman, J., & Singh, M. (2012). Curved apparent motion induced by amodal completion. Attention, Perception, & Psychophysics, 74, 350-364.
Kim, S.-H., Seo, J., & Jung, Y.-E. (2016). Apparent motion induced by an object flashing on and off in place. The Korean Journal of Cognitive and Biological Psychology, 28, 381-388.
McIntire, J. P., Havig, P. R., & Geiselman, E. E. (2014). Stereoscopic 3D displays and human performance: A comprehensive review. Displays, 35, 18-26.
Michotte, A., Thinès, G., & Crabbé, G. (1964/1991). Amodal completion of perceptual structures. In G. Thinès, A. Costall, & G. Butterworth (Eds.), Michotte’s experimental phenomenology of perception (pp. 140-167). Hillsdale: Erlbaum. Original work published 1964.
Oh, S. (2011). The Contribution of the Methodological Paradigm of Apparent Motion to the Understanding of Motion Perception. The Korean Journal of Cognitive and Biological Psychology, 23, 1-44.
Ono, F., & Kitazawa, S. (2009). The effect of marker size on the perception of an empty interval. Psychonomic Bulletin & Review, 16, 182-189.
Ono, F., & Kitazawa, S. (2010). The effect of perceived motion-in-depth on time perception. Cognition, 115, 140-146.
Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: Transforming numbers into movies. Spatial Vision, 10, 437-442.
Ramachandran, V. S., Inada, V., & Kiama, G. (1986). Perception of illusory occlusion in apparent motion. Vision Research, 26, 1741-1749.
Ryu, K. J., Kham, K., & Chung, C.-S. (2004). Spatiotemporal properties of “filling-in” process in apparent motion. The Korean Journal of Cognitive and Biological Psychology, 16, 1-21.
Scherzer, T. R., & Ekroll, V. (2009). Intermittent occlusion enhances the smoothness of sampled motion. Journal of Vision, 9, 1-18.
Shepard, R. N., & Zare, S. L. (1983). Path-guided apparent motion. Science, 220, 632-634.
Shimojo, S., & Nakayama, K. (1990). Amodal representation of occluded surfaces: role of invisible stimuli in apparent motion correspondence. Perception, 19, 285-299.
Tse, P., Cavanagh, P., & Nakayama, K. (1998). The role of parsing in high-level motion processing. In T. Watanabe, (Ed.), High-level Motion Processing: Computational, Neurobiological, and Psychophysical Perspectives (pp. 249-266). Cambridge, MA: MIT Press.
Wertheimer, M. (1912/1961). Experimental studies on the seeing of motion. In T. Shipley (Ed.), Classics in Psychology (pp. 1032-1088). New York: Philosophical Library(Original work publihed 1912).
Yantis, S. (1995). Perceived continuity of occluded visual objects. Psychological Science, 6, 182-186.
Yantis, S., & Nakama, T. (1998). Visual interactions in the path of apparent motion. Nature Neuroscience, 1, 508-512.