바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

Neural Evidence for Cognitive Style-Specific Strategies in Cognitive Control

The Korean Journal of Cognitive and Biological Psychology / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2017, v.29 no.3, pp.197-220
https://doi.org/10.22172/cogbio.2017.29.3.001


  • Downloaded
  • Viewed

Abstract

Cognitive control involves the human ability to attend to relevant information and ignore irrelevant information from environmental inputs. The present study examined neural mechanisms involved in cognitive control for relevant or irrelevant information related to individual cognitive style. Based on the Object-Spatial-Verbal cognitive style questionnaire scores, participants were divided into two preference groups, Spatializers and Verbalizers. The task included two versions of spatial Stroop tasks that required both ignoring spatial distracter while attending to a verbal target (the Word task) or an object target, respectively. Although there was no difference in the behavioral Stroop effects in either task between the two groups, imaging results demonstrated an increase in the neural Stroop effect in the right frontopolar cortex and right superior temporal sulcus for Spatializers compared to Verbalizers during the Word task, with greater activation in the left lingual gyrus and left parahippocampal/fusiform gyrus for Verbalizers compared to Spatializers during the Object task. In addition, functional connectivity between the dorsolateral prefrontal cortex and task-related regions showed group differences in the neural Stroop effect. The current results provide further evidence that individuals appear to use different strategies for cognitive control processes according to their preferential cognitive style.

keywords
인지적 통제, 인지양식, 공간 스트룹 과제, 신경 효율성, 기능적 자기공명영상, cognitive control, cognitive style, spatial Stroop task, neural efficiency, fMRI

Reference

1.

Badre, D., & Wagner, A. D. (2004). Selection, integration, and conflict monitoring; assessing the nature and generality of prefrontal cognitive control mechanisms. Neuron, 41, 473-487.

2.

Beauvois, M.-F., & Saillant, B. (1985). Optic aphasia for colours and colour agnosia: A distinction between visual and visuo-verbal impairments in the processing of colours. Cognitive Neuropsychology, 2, 1-48.

3.

Binder, J. R., Desai, R. H., Graves, W. W., & Conant, L. L. (2009). Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cerebral Cortex, 19, 2767-2796.

4.

Binder, J. R., Frost, J. A., Hammeke, T. A., Cox, R. W., Rao, S. M., & Prieto, T. (1997). Human brain language areas identified by functional magnetic resonance imaging. Journal of Neuroscience, 17, 353-362.

5.

Blazhenkova, O., & Kozhevnikov, M. (2009). The new object-spatial-verbal cognitive style model:Theory and measurement. Applied Cognitive Psychology, 23, 638-663.

6.

Boatman, D., Freeman, J., Vining, E., Pulsifer, M., Miglioretti, D., Minahan, R., . . . McKhann, G. (1999). Language recovery after left hemispherectomy in children with late-onset seizures. Annals of Neurology, 46, 579-586.

7.

Bokde, A. L., Tagamets, M. A., Friedman, R. B., & Horwitz, B. (2001). Functional interactions of the inferior frontal cortex during the processing of words and word-like stimuli. Neuron, 30, 609-617.

8.

Botvinick, M. M. (2008). Hierarchical models of behavior and prefrontal function. Trends in Cognitive Sciences, 12, 201-208.

9.

Brass, M., Zysset, S., & von Cramon, D. Y. (2001). The inhibition of imitative response tendencies. Neuroimage, 14, 1416-1423.

10.

Braver, T. S., & Bongiolatti, S. R. (2002). The role of frontopolar cortex in subgoal processing during working memory. Neuroimage, 15, 523-536.

11.

Bunge, S. A., Wendelken, C., Badre, D., & Wagner, A. D. (2005). Analogical reasoning and prefrontal cortex: evidence for separable retrieval and integration mechanisms. Cerebral Cortex, 15, 239-249.

12.

Buzzell, G. A., Roberts, D. M., Baldwin, C. L., & McDonald, C. G. (2013). An electrophysiological correlate of conflict processing in an auditory spatial Stroop task:the effect of individual differences in navigational style. International Journal of Psychophysiology, 90, 265-271.

13.

Christoff, K., & Gabrieli, J. D. E. (2000). The frontopolar cortex and human cognition:Evidence for a rostrocaudal hierarchical organization within the human prefrontal cortex. Psychobiology, 28, 168-186.

14.

Cui, X., Jeter, C. B., Yang, D. N., Montague, P. R., & Eagleman, D. M. (2007). Vividness of mental imagery: Individual variability can be measured objectively. Vision Research, 47, 474-478.

15.

Damasio, A. R., & Damasio, H. (1983). The anatomic basis of pure alexia. Neurology, 33, 1573-1583.

16.

Egner, T., & Hirsch, J. (2005). The neural correlates and functional integration of cognitive control in a Stroop task. Neuroimage, 24, 539-547.

17.

Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6, 218-229.

18.

Gitelman, D. R., Penny, W. D., Ashburner, J., & Friston, K. J. (2003). Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. Neuroimage, 19, 200-207.

19.

Gold, B. T., & Kertesz, A. (2000). Right hemisphere semantic processing of visual words in an aphasic patient: an fMRI study. Brain and Language, 73, 456-465.

20.

Green, A. E., Kraemer, D. J., Fugelsang, J. A., Gray, J. R., & Dunbar, K. N. (2010). Connecting long distance: semantic distance in analogical reasoning modulates frontopolar cortex activity. Cerebral Cortex, 20, 70-76.

21.

Haas, B. W., Omura, K., Amin, Z., Constable, R. T., & Canli, T. (2006). Functional connectivity with the anterior cingulate is associated with extraversion during the emotional Stroop task. Social Neurosciences, 1, 16-24.

22.

Harrison, B. J., Shaw, M., Yucel, M., Purcell, R., Brewer, W. J., Strother, S. C., . . . Pantelis, C. (2005). Functional connectivity during Stroop task performance. Neuroimage, 24, 181-191.

23.

Haxby, J. V., Grady, C. L., Horwitz, B., Ungerleider, L. G., Mishkin, M., Carson, R. E., . . . Rapoport, S. I. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences, 88, 1621-1625.

24.

Hertz-Pannier, L., Chiron, C., Jambaque, I., Renaux-Kieffer, V., Van de Moortele, P. F., Delalande, O., . . . Le Bihan, D. (2002). Late plasticity for language in a child's non-dominant hemisphere - A pre- and post-surgery fMRI study. Brain, 125, 361-372.

25.

Horwitz, B., Rumsey, J. M., & Donohue, B. C. (1998). Functional connectivity of the angular gyrus in normal reading and dyslexia. Proceedings of the National Academy of Sciences, 95, 8939-8944.

26.

Hsu, N. S., Kraemer, D. J., Oliver, R. T., Schlichting, M. L., & Thompson-Schill, S. L. (2011). Color, context, and cognitive style: variations in color knowledge retrieval as a function of task and subject variables. Journal of Cognitive Neuroscience, 23, 2544-2557.

27.

Humphreys, G. W., Riddoch, M. J., & Price, C. J. (1997). Top-down processes in object identification: Evidence from experimental psychology, neuropsychology and functional anatomy. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 352, 1275-1282.

28.

Kemmotsu, N., Villalobos, M. E., Gaffrey, M. S., Courchesne, E., & Muller, R. A. (2005). Activity and functional connectivity of inferior frontal cortex associated with response conflict. Cognitive Brain Research, 24, 335-342.

29.

Kim, C., Johnson, N. F., Cilles, S. E., & Gold, B. T. (2011). Common and distinct mechanisms of cognitive flexibility in prefrontal cortex. Journal of Neuroscience, 31, 4771-4779.

30.

Kim, C., Kroger, J. K., Calhoun, V. D., & Clark, V. P. (2015). The role of the frontopolar cortex in manipulation of integrated information in working memory. Neuroscience Letters, 595, 25-29.

31.

Koechlin, E., & Hyafil, A. (2007). Anterior prefrontal function and the limits of human decision-making. Science, 318, 594-598.

32.

Kozhevnikov, M. (2007). Cognitive styles in the context of modern psychology: toward an integrated framework of cognitive style. Psychological Bulletin, 133, 464.

33.

Kozhevnikov, M., Kosslyn, S., & Shephard, J. (2005). Spatial versus object visualizers: a new characterization of visual cognitive style. Memory & Cognition, 33, 710-726.

34.

Kraemer, D. J., Hamilton, R. H., Messing, S. B., Desantis, J. H., & Thompson-Schill, S. L. (2014). Cognitive style, cortical stimulation, and the conversion hypothesis. Frontiers in Human Neuroscience, 8, 15.

35.

Kraemer, D. J., Rosenberg, L. M., & Thompson-Schill, S. L. (2009). The neural correlates of visual and verbal cognitive styles. Journal of Neuroscience, 29, 3792-3798.

36.

Kriegeskorte, N., Simmons, W. K., Bellgowan, P. S., & Baker, C. I. (2009). Circular analysis in systems neuroscience: the dangers of double dipping. Nature Neuroscience, 12, 535-540.

37.

Li, S., Gong, D., Jia, S., Zhang, W., & Ma, Y. (2011). Object and spatial visualizers have different object-processing patterns: behavioral and ERP evidence. Neuroreport, 22, 860-864.

38.

McIntosh, A. R., Grady, C. L., Ungerleider, L. G., Haxby, J. V., Rapoport, S. I., & Horwitz, B. (1994). Network analysis of cortical visual pathways mapped with PET. Journal of Neuroscience, 14, 655-666.

39.

Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167-202.

40.

Moore, C. J., & Price, C. J. (1999). Three distinct ventral occipitotemporal regions for reading and object naming. Neuroimage, 10, 181-192.

41.

Motes, M. A., Malach, R., & Kozhevnikov, M. (2008). Object-processing neural efficiency differentiates object from spatial visualizers. Neuroreport, 19, 1727-1731.

42.

Nagel, I. E., Preuschhof, C., Li, S.-C., Nyberg, L., Bäckman, L., Lindenberger, U., & Heekeren, H. R. (2011). Load modulation of BOLD response and connectivity predicts working memory performance in younger and older adults. Journal of Cognitive Neuroscience, 23, 2030-2045.

43.

Niendam, T. A., Laird, A. R., Ray, K. L., Dean, Y. M., Glahn, D. C., & Carter, C. S. (2012). Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognitive, Affective, &Behavioral Neuroscience, 12, 241-268.

44.

Price, C. J., Devlin, J. T., Moore, C. J., Morton, C., & Laird, A. R. (2005). Meta-analyses of object naming: Effect of baseline. Human Brain Mapping, 25, 70-82.

45.

Price, C. J., Moore, C. J., Humphreys, G. W., Frackowiak, R. S. J., & Friston, K. J. (1996). The neural regions sustaining object recognition and naming. Proceedings of the Royal Society of London B: Biological Sciences, 263, 1501-1507.

46.

Rogers, R. D., Andrews, T. C., Grasby, P. M., Brooks, D. J., & Robbins, T. W. (2000). Contrasting cortical and subcortical activations produced by attentional-set shifting and reversal learning in humans. Journal of Cognitive Neuroscience, 12, 142-162.

47.

Shin, G., & Kim, C. (2013). Individual differences in performance on working memory tasks according to object, spatial, and verbal cognitive styles. The Korean Journal of Cognitive and Biological Psychology, 25, 539-563.

48.

Shin, G., & Kim, C. (2015). Neural correlates of cognitive style and flexible cognitive control. Neuroimage, 113, 78-85.

49.

Simons, J. S., Koutstaal, W., Prince, S., Wagner, A. D., & Schacter, D. L. (2003). Neural mechanisms of visual object priming: evidence for perceptual and semantic distinctions in fusiform cortex. Neuroimage, 19, 613-626.

50.

Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643.

51.

Thiel, A., Habedank, B., Herholz, K., Kessler, J., Winhuisen, L., Haupt, W. F., & Heiss, W. D. (2006). From the left to the right: How the brain compensates progressive loss of language function. Brain and Language, 98, 57-65.

52.

Vandenberghe, R., Price, C., Wise, R., Josephs, O., & Frackowiak, R. S. (1996). Functional anatomy of a common semantic system for words and pictures. Nature, 383, 254-256.

53.

Vannucci, M., Mazzoni, G., Chiorri, C., & Cioli, L. (2008). Object imagery and object identification: object imagers are better at identifying spatially-filtered visual objects. Cognitive Processing, 9, 137-143.

54.

Vigneau, M., Beaucousin, V., Herve, P. Y., Jobard, G., Petit, L., Crivello, F., . . . Tzourio-Mazoyer, N. (2011). What is right-hemisphere contribution to phonological, lexico-semantic, and sentence processing? Insights from a meta-analysis. Neuroimage, 54, 577-593.

55.

Zeki, S., Watson, J. D., Lueck, C. J., Friston, K. J., Kennard, C., & Frackowiak, R. S. (1991). A direct demonstration of functional specialization in human visual cortex. Journal of Neuroscience, 11, 641-649.

The Korean Journal of Cognitive and Biological Psychology