바로가기메뉴

본문 바로가기 주메뉴 바로가기

logo

  • P-ISSN1226-9654
  • E-ISSN2733-466X
  • KCI

시각작업기억 연구를 위한 변화탐지 과제의 방법론적 제약 및 이론적 시사점에 대한 고찰

A Review of methodological limitations of change detection task and their theoretical implications for studying visual working memory

한국심리학회지: 인지 및 생물 / The Korean Journal of Cognitive and Biological Psychology, (P)1226-9654; (E)2733-466X
2017, v.29 no.3, pp.287-313
https://doi.org/10.22172/cogbio.2017.29.3.005
현주석 (중앙대학교)

초록

변화탐지 과제는 시각작업기억의 정보처리 특성을 이해하기 위한 과제로 널리 사용되어 왔다. 그러나 과거 분명치 않았던 변화탐지 과제의 여러 방법론적 제약들에 대한 재고의 필요성이 최근에 이르러 제기된 바 있다. 본 개관 논문에서는 이러한 변화탐지 과제의 방법론적 심층 논리를 소개하고 최근 지적된 과제 활용에 있어서의 제약들에 대한 이해를 시도하였다. 또한 이러한 제약 아래 방법론적 개선이 요구되는 변화탐지 과제의 주요 사안들을 구체적으로 논의하고 이에 비추어 관찰된 실험 결과에 대한 보수적인 해석이 필요함을 강조하였다.

keywords
change detection task, visual working memory, methodological backbone, review, 변화탐지 과제, 시각작업기억, 방법론적 근간, 개관

Abstract

Change detection tasks have been widely used for understanding the information processing properties of visual working memory. Nevertheless, there has been a recent concern against the use of change detection task due to its several methodological limitations that had been unnoticed in the past. The present review introduced the methodological backbone of change detection task, aiming toward an understanding of recent challenges against its use. The study further discussed several major aspects of change detection task in detail that would demand methodological improvement, and accordingly emphasized the necessity of conservative interpretations on the observed experimental results.

keywords
change detection task, visual working memory, methodological backbone, review, 변화탐지 과제, 시각작업기억, 방법론적 근간, 개관

참고문헌

1.

Adam, K. C. S., Mance, I., Fukuda, K., & Vogel, E. K. (2015). The Contribution of Attentional Lapses to Individual Differences in Visual Working Memory Capacity. Journal of Cognitive Neuroscience, 27, 1601-1616.

2.

Agam, Y., Hyun, J.-S., Danker, J. F., Zhou, F., Kahana, M., & Sekuler, R. (2009). Early neural signature of visual short-term memory. NeuroImage, 44, 531-536.

3.

Allen, R. J., Hitch, G. J., Mate, J., & Baddeley, A. D. (2012). Feature binding and attention in working memory: a resolution of previous contradictory findings. Quarterly Journal of Experimental Psychology, 65, 2369-2383. doi:10.1080/17470218.2012.687384

4.

Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by information load and by number of objects. Psychological Science, 15, 106-111.

5.

Atkinson, R. C., & Shiffrin, R. M. (1971). The control of short-term memory. Scientific American, 225, 82-90.

6.

Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological Science, 18, 622-628.

7.

Baddeley, A. D. (1983). Working memory. Philosophical Transactions of the Royal Society B:Biological Sciences, 302, 311-324.

8.

Baddeley, A. D. (1986). Working Memory. Oxford:Clarendon.

9.

Baddeley, A. D. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology. A, Human Experimental Psychology, 49A, 5-28.

10.

Baddeley, A. D., Della Sala, S., Gray, C., Papagno, C., & Spinnler, H. (1997). Testing central executive functioning with a pencil and paper test. In P. M. A. Rabbitt (Ed.), Methodology of Frontal and Executive Functions (pp. 61-80). Hove: Psychology Press.

11.

Baddeley, A. D., & Hitch, G. J. (2014). Evidence for two attentional components in visual working memory. Journal of Experimental Psychology: Human Learning & Memory, 40, 1499-1509.

12.

Bamber, D. E. (1969). Reaction times and error rates for “same”-“different” judgments of multidimensional stimuli. Perception &Psychophysics, 6, 169-174.

13.

Banno, H., & Saiki, J. (2015). The processing speed of scene categorization at multiple levels of description: The superordinate advantage revisited. Perception, 44, 269-288.

14.

Barton, B., Ester, E. F., & Awh, E. (2009). Discrete resource allocation in visual working memory. Journal of Experimental Psychology:Human Perception and Performance, 35, 1359-1367.

15.

Bays, P. M. (2015). Spikes not slots: noise in neural populations limits working memory. Trends in Cognitive Science, 19, 431-438.

16.

Bays, P. M., Catalao, R. F. G., & Husain, M. (2009). The precision of visual working memory is set by allocation of a shared resource. Journal of Vision, 9, 1-11.

17.

Bays, P. M., & Husain, M. (2008). Dynamic shift of limited working memory resources in human vision. Science, 321, 851-854.

18.

Bengson, J. J., & Luck, S. J. (2016). Effects of strategy on visual working memory capacity. Psychonomic Bulletin & Review, 23, 265-270.

19.

Blanco, M. J., & Alvarez, A. A. (1994). Psychometric intelligence and visual focussed attention: Relationship in nonsearch tasks. Intelligence, 18, 77-106.

20.

Brady, T. F., & Alvarez, G. A. (2011). Hierarchical encoding in visual working memory: Ensemble statistics bias memory for individual items. Psychological Science, 22, 384-392.

21.

Brady, T. F., Konkle, T., & Alvarez, G. A. (2009). Compression in visual short-term memory: Using statistical regularities to form more efficient memory representations. Journal of Experimental Psychology: General, 138, 487-502.

22.

Brady, T. F., Konkle, T., Alvarez, G. A., & Oliva, A. (2008). Visual long-term memory has a massive storage capacity for object details. Procedings of the National Academy of Science, 105, 14325-14329.

23.

Brady, T. F., Konkle, T., Gill, J., Oliva, A., & Alvarez, G. A. (2013). Visual long-term memory has the same limit on fidelity as visual working memory. Psychological Science, 24, 981-990. doi: 10.1177/0956797612465439

24.

Brady, T. F., & Tenenbaum, J. B. (2010). Encoding higher-order structure in visual working memory: A probabilistic model. In S. Ohlsson & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 411.416). Austin, TX:Cognitive Science.

25.

Brown, L. A., & Brockmole, J. (2010). The role of attention in binding visual features in working memory: Evidence from cognitive aging. The Quarterly Journal of Experimental Psychology, 63, 2067-2079.

26.

Buttle, H., & Raymond, J. E. (2003). High familiarity enhances visual change detection for face stimuli. Perception and Psychophysics, 65, 1296-1306.

27.

Carlson-Radvansky, L. A., & Irwin, D. E. (1995). Memory for structural information across eye movements. Journal of Experimental Psychology:Learning, Memory, and Cognition, 21, 1441-1458.

28.

Coltheart, M. (1980a). Iconic memory and visible persistence. Perception and Psychophysics, 27, 183-228.

29.

Coltheart, M. (1980b). The persistence of vision. Philosophical Transactions of the Royal Society of London, 290, 57-69.

30.

Conway, A. R. A., Cowan, N., Bunting, M. F., Therriault, D. J., & Minkoff, S. R. B. (2002). A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence, 30, 163-183.

31.

Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. Behavioral and Brain Sciences, 24, 87-185.

32.

Cowan, N., Blume, C. L., & Saults, J. S. (2013). Attention to attributes and objects in working memory. Journal of Experimental Psychology:Learning, Memory, and Cognition, 39, 731-747. doi: 10.1037/a0029687

33.

Cowan, N., Elliott, E. M., Saults, J. S., Morey, C. C., Mattox, S., Ismajatulina, A., & Conway, A. R. A. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51, 42-100.

34.

Cowan, N., & Saults, J. S. (2013). When does a good working memory counteract proactive interference? Surprising evidence from a probe recognition task. Journal of Experimental Psychology: General, 142, 12-17.

35.

Curby, K. M., & Gauthier, I. (2007). A visual short-term memory advantage for faces. Psychonomic Bulletin & Review, 14, 620-628.

36.

D'esposito, M., Detre, J. A., Alsop, D. C., shin, R. K., Atlas, S., & Grossman, M. (1995). The neural basis of the central executive system of working memory. Nature, 378, 279-281.

37.

de Wit, B., & Kninoshita, S. (2015). An RT distribution analysis of relatedness proportion effects in lexical decision and semantic categorization reveals different mechanisms. Memory & Cognition, 43, 99-110.

38.

Di Lollo, V. (1980). Temporal integration in visual memory. Journal of Experimental Psychology:General, 109, 75-97.

39.

Donkin, C., Nosofsky, R., Gold, J. M., & Shiffrin, R. M. (2013). Discrete-slots models of visual working-memory response times. Psychological Review, 120, 873-902.

40.

Donkin, C., Tran, S. C., & Nosofsky, R. (2013). Landscaping analyses of the ROC predictions of discrete-slots and signal-detection models of visual working memory. Attention, Perception &Psychophysics, 76, 2103-2116.

41.

Drew, T., McCollough, A. W., & Vogel, E. K. (2006). Event-related potential measures of visual working memory. Clinical EEG and Neuroscience, 37, 286-291.

42.

Dube, C., Zhou, F., Kahana, M. J., & Sekuler, R. (2014). Similarity-based distortion of visual short-term memory is due to perceptual averaging. Vision Research, 96, 8-16. doi: 10.1016/j.visres.2013.12.016

43.

Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 12, 1127-1133.

44.

Farell, B. (1985). "Same"–"different" judgments: A review of current controversies in perceptual comparisons. Psychological Bulletin, 98, 419-456.

45.

Fernandez-Duque, D., & Thornton, M. (2000). Change detection without awareness: Do explicit reports underestimate the representation of change in the visual system?. Visual Cognition, 7, 323-344.

46.

Fougnie, D., Asplund, C. L., & Marois, R. (2010). What are the units of storage in visual working memory?. Journal of Vision, 10, 1-11.

47.

Fukuda, K., Awh, E., & Vogel, E. K. (2010). Discrete capcity limits in visual working memory. Current Opinion in Neurobiology, 20, 177-182.

48.

Fukuda, K., & Vogel, E. K. (2009). Human variation in overriding attentional capture. The Journal of Neuroscience, 29, 8726-8733.

49.

Fuller, R. L., Luck, S. J., McMahon, R. P., & Gold, J. M. (2005). Working memory consolidation is abnormally slow in schizophrenia. Journal of Abnormal Psychology, 114, 279-290.

50.

Gao, Z., Li, J., Liang, J., Chen, H., Yin, J., & Shen, M. (2009). Storing fine detailed information in visual working memory-Evidence from event-related potentials. Journal of Vision, 9, 1-12.

51.

Gegenfurtner, K. R., & Sperling, G. (1993). Information transfer in iconic memory experiments. Journal of Experimental Psychology:Human Perception and Performance, 19, 845-866.

52.

Gilchrist, A. L., & Cowan, N. (2014). A two-stage search of visual working memory: investigating speed in the change-detection paradigm. Attention, Perception, & Psychophysics, 76, 2031-2050. doi: 10.3758/s13414-014-0704-5

53.

Gold, J. M., Wilk, C., McMahon, R., & Luck, S. J. (2003). Working memory for visual features and conjunctions in schizophrenia. Journal of Abnormal Psychology, 112, 61-71.

54.

Gorgoraptis, N., Catalao, R. F. G., Bays, P. M., & Husain, M. (2011). Dynamic updating of working memory resources for visual objects. The Journal of Neuroscience: the official journal of the Society for Neuroscience, 31, 8502-8511. doi:10.1523/JNEUROSCI.0208-11.2011

55.

Green, D., & Swets, J. (1966). Signal Detection Theory and Psychophysics. New York: Wiley.

56.

Griffin, I. C., & Nobre, A. C. (2003). Orienting attention to locations in internal representations. Journal of Cognitive Neuroscience, 15, 1176-1194.

57.

Han, J.-E., & Hyun, J.-S. (2011). The consolidation and comparison processes in visual working memory tested under pattern-backward masking. Korean Journal of Cognitive Science, 22, 365-384.

58.

Han, S.-H., & Kim, M.-S. (2004). Visual search does not remain efficient when executive working memory is working. Psychological Science, 15, 623-628.

59.

Han, S. W., & Kim, M.-S. (2009). Do the contents of working memory capture attention? Yes, but cognitive control matters. Journal of Experimental Psychology: Human Perception and Performance, 35, 1292-1302.

60.

Hardman, K. O., & Cowan, N. (2015). Remembering complex objects in visual working memory: do capacity limits restrict objects or features?. Journal of Experimental Psychology:Learning, Memory, and Cognition, 41, 325-347. doi: 10.1037/xlm0000031

61.

Heathcote, A., Popiel, S. J., & Mewhort, D. J. (1991). Analysis of response time distributions:An example using the Stroop task. Psychological Bulletin, 109, 340-347.

62.

Hollingworth, A. (2003). Failures of retrieval and comparison constrain change detection in natural scenes. Journal of Experimental Psychology:Human Perception and Performance, 29, 388-403.

63.

Hollingworth, A. (2005). The relationship between online visual representation of a scene and long-term scene memory. Journal of Experimental Psychology: Learning, Memory, &Cognition, 31, 396-411.

64.

Hollingworth, A. (2006). Visual memory for natural scenes: Evidence from change detection and visual search. Visual Cognition, 14, 781-807.

65.

Hu, Y., Hitch, G. J., Baddeley, A. D., Zhang, M., & Allen, R. J. (2014). Executive and perceptual attention play different roles in visual working memory: Evidence from suffix and strategy effects. Journal of Experimental Psychology: Human Perception & Performance, 40, 1665-1678.

66.

Huang, L. (2010). Visual working memory is better characterized as a distributed resource rather than discrete slots. Journal of Vision, 10, 8. doi: 10.1167/10.14.8

67.

Hurlstone, M. J., Hitch, G. J., & Baddeley, A. D. (2014). Memory for serial order across domains: An overview of the literature and directions for future research. Psychological Bulletin, 140, 339-373.

68.

Hyun, J.-S. (2008). The spatial-effect profile of visual attention in perception and memory. Korean Journal of Cognitive Science, 19, 311-330.

69.

Hyun, J.-S. (2011). Understanding visual working memory based on significant examples of behavioral studies. The Korean Journal of Cognitive and Biological Psychology, 23, 45-90.

70.

Hyun, J.-S., & Luck, S. J. (2007). Visual working memory as the substrate for mental rotation. Psychonomic Bulletin & Review, 14, 154-158.

71.

Hyun, J.-S., Woodman, G. F., Vogel, E. K., Hollingworth, A., & Luck, S. J. (2009). The comparison of visual working memory representations with perceptual inputs. Journal of Experimental Psychology: Human Perception and Performance, 35, 1140-1160. doi: 10.1037/a0015019

72.

Hyun, J. S. (2009). Properties of visual working memory representations as examined by memory-perception comparison process. The Korean Journal of Cognitive and Biological Psychology, 21, 265-282.

73.

Irwin, D. E. (1992). Memory for position and identity across eye movements. Journal of Experimental Psychology: Learning, Memory, and Cognition, 18, 307-317.

74.

Irwin, D. E., & Andrews, R. V. (1996). Integration and accumulation of information across saccadic eye movements. In T. Inui &J. L. McClelland (Eds.), Attention and Performance XVI (pp. 125-155). Cambridge, MA: MIT Press.

75.

Jiang, Y., Chun, M. M., & Olson, I. R. (2004). Perceptual grouping in change detection. Perception and Psychophysics, 66, 446-453.

76.

Jiang, Y., Olson, I. R., & Chun, M. M. (2000). Organization of visual short-term memory. Journal of Experimental Psychology: Learning, Memory, & Cognition, 2, 683-702.

77.

Jiang, Y. V., Lee, H. J., Asaad, A., & Remington, R. (2015). Similarity effects in visual working memory. Psychonomic Bulletin & Review, 23, 1-7.

78.

Johnson, J. S., Hollingworth, A., & Luck, S. J. (2008). The role of attention in the maintenance of feature bindings in visual short-term memory. Journal of Experimental Psychology: Human Perception and Performance, 34, 41-55. doi: 10.1037/0096-1523.34.1.41

79.

Kahana, M. J., & Sekuler, R. (2002). Recognizing spatial patterns: a noisy examplar approach. Vision Research, 42, 2177-2192.

80.

Kang, H.-I., & Hyun, J.-S. (2011). The property of attentional-resource allocation by the processing stages of visual working memory. The Korean Journal of Cognitive and Biological Psychology, 23, 487-504.

81.

Kurawe, M. A., & Zimmer, H. D. (2015). Costs of storing colour and complex shape in visual working memory: Insight from pupil and slow waves. Acta Psychologica, 158, 67-77.

82.

Lin, P. H., & Luck, S. J. (2012). Proactive interference does not meaningfully distort visual working memory capacity estimates in the canonical change detection task. Frontiers in Psychology, 3, doi: 10.3389/fpsyg. 2012.00042

83.

Logie, R. H., & Marchetti, C. (1991). Visuo-spatial working memory: Visual, spatial or central executive?. Advances in Psychology, 80, 105-115.

84.

Luck, S. J., & Hollingworth, A. (2008). Visual Memory: Oxford University Press.

85.

Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390, 279-281.

86.

Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17, 391-400.

87.

Magnussen, S. (2000). Low-level memory processes in vision. Trends in Cognitive Science, 23, 247-251.

88.

Magnussen, S., Greenlee, M. W., & Thomas, J. P. (1996). Parallel processing in visual short-term memory. Journal of Experimental Psychology:Human Perception and Performance, 22, 202-212.

89.

Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16, 798-817.

90.

Maxcey, A. M., & Woodman, G. F. (2014). Can we throw information out of visual working memory and does this leave informational residue in long-term memory?. Frontiers in Psychology, 22. doi: 10.3389/fpsyg.2014.00294

91.

McCollough, A. W., Machizawa, M. G., & Vogel, E. K. (2007). Electrophysiological measures of maintaining representations in visual working memory. Cortex, 43, 77-94. doi: 10.1016/S0010-9452(08)70447-7

92.

Nosofsky, R. M., & Donkin, C. (2016). Response-time evidence for mixed memory states in a sequential-presentation changedetection task. Cognitive Psychology, 84, 31-62.

93.

Oakes, L. M., Ross-Sheehy, S., & Luck, S. J. (2006). Rapid development of feature binding in visual short-term memory. Psychological Science, 17, 781-787.

94.

Oberauer, K., Awh, E., & Sutterer, D. W. (2017). The role of long-term memory in a test of visual working memory: Proactive facilitation but no proactive interference. Journal of Experimental Psychology: Learning, Memory, &Cognition, 43, 1-22.

95.

Olsson , H., & Poom, L. (2005). Visual memory needs categories. Proceedings of National Academy of Science, 102, 8776-8780.

96.

Pailian, H., & Halberda, J. (2015). The reliability and internal consistency of one-shot and flicker change detection for measuring individual differences in visual working memory capacity. Memory & Cognition, 43, 397-420.

97.

Palmer, E. M., Horowitz, T. S., Torralba, A., & Wolfe, J. (2011). What are the shapes of response time distributions in visual search?. Journal of Experimental Psychology: Human Perception and Performance, 37, 58-71.

98.

Park, H., Han, J.-E., & Hyun, J.-S. (2015). You may look unhappy unless you smile: The distinctiveness of a smiling face against faces without an explicit smile. Acta Psychologica, 157, 185-194.

99.

Park, H., Zhang, W., & Hyun, J.-S. (2017a). The aftermath of memory retrieval for recycling visual working memory representations. Attention, Perception, & Psychophysics, 79, 1393-1407. doi: 10.3758/s13414-017-1314-9

100.

Park, H., Zhang, W., & Hyun, J.-S. (2017b). Dissociating models of visual working memory by reaction-time analysis. Acta Psychologica, 173, 21-31.

101.

Pashler, H. (1988). Familiarity and visual change detection. Perception and Psychophysics, 44, 369-378.

102.

Rensink, R. A. (2000a). The dynamic representation of scences. Visual Cognition, 7, 17-42.

103.

Rensink, R. A. (2000b). Visual search for change:A probe into the nature of attentional processing. Visual Cognition, 7, 345-376.

104.

Rensink, R. A. (2002). Change detection. Annual Review of Psychology, 53, 245-277.

105.

Ross-Sheehy, S., Oakes, L. M., & Luck, S. J. (2003). The development of visual short-term memory capacity in infants. Child Development, 74, 1807-1822.

106.

Rouder, J. N., Morey, R. D., Cowan, N., Zwilling, C. E., Morey, C. C., & Pratte, M. S. (2008). An assessment of fixed-capacity models of visual working memory. Procedings of the National Academy of Science, 105, 5975-5979.

107.

Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18, 324-330. doi: 10.3758/s13423-011-0055-3

108.

Salmela, V. R., & Saarinen, J. (2013). Detection of small orientation changes and the precision of visual working memory. Vision Research, 76, 17-24.

109.

Schmidt, B. K., Vogel, E. K., Woodman, G. F., & Luck, S. J. (2002). Voluntary and involuntary attentional control of visual working memory. Perception and Psychophysics, 64, 754-763.

110.

Scott-Brown, K. C., Baker, M. R., & Orbach, H. S. (2000). Comparison blindness. Visual Cognition, 7, 253-267.

111.

Shiffrin, R. M., & Atkinson, R. C. (1969). Storage and retrieval processes in long-term memory. Psychological Review, 76, 179-193.

112.

Shin, Y., & Hyun, J. -S. (2013). Understanding the experience of visual change detection based on the experience of a sensory conflict evoked by a binocular rivalry. Science of Emotion & Sensibility, 16, 341-350.

113.

Song, J. -H., & Jiang, Y. (2006). Visual working memory for simple and complex features: an fMRI study. NeuroImage, 15, 963-972.

114.

Soto, D., Heinke, D., Humphrey, G. W., & Blanco, M. J. (2005). Early involuntary topdown guidance of attention from working memory. Journal of Experimental Psychology:Human Perception & Performance, 31, 248-261.

115.

Sperling, G. (1960). The information available in brief visual presentations. Psychological Monographs: General and applied, 74, 1-29.

116.

Sperling, G. (1967). Successive approximations to a model for short-term memory. Acta Psychologica, 27, 285-292.

117.

Sternberg, S. (1966). High-speed scanning in human memory. Science, 153, 652-654.

118.

Sternberg, S. (1969). Memory scanning: Mental processes revealed by reaction time experiments. American Scientist, 57, 421-457.

119.

Sternberg, S., & Backus, B. T. (2015). Sequential processes and the shapes of reaction time distributions. Psychological Review, 122, 830-837.

120.

Suchow, J. W., Fougnie, D., & Brady, T. F. (2014). Terms of the debate on the format and structure of visual memory. Attention, Perception, & Psychophysics, 76, 2071-2079.

121.

Thiele, J. E., Pratte, M. S., & Jeffrey, N. R. (2011). On perfect working-memory performance with large number of items. Psychonomic Bulletin & Review, 18, 958-963.

122.

Todd, J. J., Han, S. W., Harrison, S., & Marois, R. (2011). The neural correlates of visual working memory encoding. Neuropsychologia, 49, 1527-1536.

123.

Tsubomi, H., Fukuda, K., Watanabe, K., & Vogel, E. K. (2013). Neural limits to representing objects still within view. Journal of Neuroscience, 33, 8257-8263. doi: 10.1523/JNEUROSCI. 5348-12.2013

124.

Van den Berg, R., & Ma, W. J. (2014). "Plateau"-related summary stataistics are uninformative for comparing working memory models. Attention, Perception, & Psychophysics, 76, 2117-2135.

125.

Van den Berg, R., Shin, H., Chou, W.-C., George, R., & Ma, W. J. (2012). Variability in encoding precision accounts for visual shortterm memory limitations. Proceedings of the National Academy of Science, 109, 8780-8785.

126.

Viswanathan, S., Perl, D. R., Visscher, K. M., Kahana, M., & Sekuler, R. (2010). Homogeneity computation: How interitem similarity in visual short-term memory alters recogntiion. Psychonomic Bulletin & Review, 17, 59-65.

127.

Vogel, E. K., & Luck, S. J. (1997). ERP evidence for a general-purpose visual discrimination mechanism. Society for Neuroscience Abstracts, 23, 1589.

128.

Vogel, E. K., & Luck, S. J. (2000). Selective access to visual working memory. Cognitive Neuroscience Society 2000 Annual Meeting Abstract Program, 97.

129.

Vogel, E. K., & Machizawa, M. G. (2004). Neural activity predicts individual differences in visual working memory capacity. Nature, 428, 748-751.

130.

Vogel, E. K., McCollough, A. W., & Machizawa, M. G. (2005). Neural measures reveal individual differences in controlling access to working memory. Nature, 438, 500-503.

131.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions and objects in visual working memory. Journal of Experimental Psychology: Human Perception &Performance, 27, 92-114.

132.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2005). Pushing around the locus of selection:Evidence for the flexible-selection hypothesis. Journal of Cognitive Neuroscience, 17, 1907-1922.

133.

Vogel, E. K., Woodman, G. F., & Luck, S. J. (2006). The time course of consolidation in visual working memory. Journal of Experimental Psychology: Human Perception and Performance, 32, 1436-1451.

134.

Wagemans, J., Elder, J. H., Kubovy, M., Palmer, S. E., Peterson, M. A., Singh, M., & von der Heydt, R. (2012). A century of Gestalt psychology in visual perception I. Perceptual grouping and figure-ground organization. Psychological Bulletin, 1388, 1172-1217.

135.

Wertheimer, M. (1924/1950). Gestalt theory. In W. D. Ellis (Ed.), A sourcebook of Gestalt psychology (pp. 1-11). New York: The Humanities Press.

136.

Wheeler, M. E., & Treisman, A. M. (2002). Binding in short-term visual memory. Journal of Experimental Psychology: General, 131, 48-64.

137.

Wilken, P., & Ma, W. J. (2004). A detection theory account of change detection. Journal of Vision, 4, 1120-1135.

138.

Woodman, G. F., & Luck, S. J. (2003). Serial deployment of attention during visual search. Journal of Experimental Psychology: Human Perception and Performance, 29, 121-138.

139.

Woodman, G. F., & Vecera, S. P. (2011). The cost of accessing an object's feature stored in visual working memory. Visual Cognition, 19, 1-12.

140.

Woodman, G. F., Vecera, S. P., & Luck, S. J. (2003). Perceptual organization influences visual working memory. Psychonomic Bulletin &Review, 10, 80-87.

141.

Woodman, G. F., & Vogel, E. K. (2005). Fractionating working memory: Consolidation and maintenance are independent processes. Psychological Science, 16, 106-113.

142.

Woodman, G. F., Vogel, E. K., & Luck, S. J. (2001). Visual search remains efficient when visual working memory is full. Psychological Science, 12, 219-224.

143.

Xu, Y., & Chun, M. M. (2006). Dissociable neural mechanisms supporting visual short-term memory for objects. Nature, 440, 91-95.

144.

Zandt, V. (2000). How to fit a response time disbribution. Psychonomic Bulletin & Review, 7, 424-465.

145.

Zelinsky, G. J. (2001). Eye movements during change detection: Implications for search constraints, memory limitations, and scanning strategies. Perception & Psychophysics, 63, 209-225.

146.

Zhang, W., & Luck, S. J. (2008). Discrete fixed-resolution representations in visual working memory. Nature, 453, 233-235.

147.

Zhang, W., & Luck, S. J. (2009). Sudden death and gradual decay in visual working memory. Psychological Science, 20, 423-428.

148.

Zhang, W., & Luck, S. J. (2011). The Number and Quality of Representations in Working Memory. Psychological Science, 22, 1434-1441. doi: 10.1177/0956797611417006

149.

Zhou, F., Kahana, M. J., & Sekuler, R. (2004). Short-term episodic memory for visual textures: A roving probe gathers some memory. Psychological Science, 15, 112-118.

150.

Zokaei, N., Heider, M., & Husain, M. (2014). Attention is required for maintenance of feature binding in visual working memory. Quarterly Journal of Experimental Psychology, 67, 1191-1213.

한국심리학회지: 인지 및 생물