ISSN : 1229-0661
Adolescent delinquency is a substantial social problem that occurs in both offline and online domains. The current study utilized random forest algorithms to identify predictors of adolescents’ online and offline delinquency. Further, we explored the applicability of classic delinquency theories (social learning, strain, social control, routine activities, and labeling theory). We used the first-grade and fourth-grade elementary school panels as well as the first-grade middle school panel (N=4,137) among the sixth wave of the nationally-representative Korean Children and Youth Panel Survey 2010 for analysis. Random forest algorithms were used instead of the conventional regression analysis to improve the predictive performance of the model and possibly consider many predictors in the model. Random forest algorithm results showed that classic delinquency theories designed to explain offline delinquency were also applicable to online delinquency. Specifically, salient predictors of online delinquency were closely related to individual factors(routine activities and labeling theory). Social factors(social control and social learning theory) were particularly important for understanding offline delinquency. General strain theory was the commonly important theoretical framework that predicted both offline and online delinquency. Findings may provide evidence for more tailored prevention and intervention strategies against offline and online adolescent delinquency.