ISSN : 1229-0653
거짓말 탐지 방법의 한 종류인 P300 숨긴정보검사는 두 가지 단점을 가진다. 한 가지는 전체 검사를 실시하는데 걸리는 시간이 길다는 점이고 다른 한 가지는 대응수단에 취약할 수 있다는 점이다. 본 연구에서는, P300 숨긴정보검사에서 1초 이내의 짧은 자극간 제시간격을 사용하는 것이 두 가지 단점을 극복할 수 있는지를 검증하였다. 실험 1에서는 P300 숨긴정보검사에서 1초 이내의 짧은 자극간 제시간격을 사용하였을 때 검사의 정확도가 유지되는지 확인하였다. 실험결과, 자극간 제시간격이 500ms인 조건에서는 3000ms인 조건보다 관련자극과 무관련자극간의 P300 진폭 차이가 크게 감소한 것으로 나타났다. 자극간 제시간격이 800ms인 조건에서도 3000ms인 조건보다 관련자극과 무관련자극 간의 P300 진폭 차이가 감소하기는 하였지만, 효과크기 지수는 두 조건 간에 비슷한 것으로 나타났다. 실험 2에서는 자극간 제시간격이 3000ms인 조건과 500ms, 800ms인 조건에서 대응수단의 효과를 검증하였다. 자극간 제시간격이 3000ms인 조건과 800ms인 조건에서는 대응수단의 효과가 나타나지 않았다. 그러나 자극간 제시간격이 500ms인 조건에서는 유의수준 .10에서 검사의 정확도가 낮아지는 것으로 나타났다. 결과적으로, 자극간 제시간격이 800ms인 조건은 전체 검사시간이 짧으면서 대응수단에 영향을 받지 않을 가능성이 높았으며, 자극간 제시간격이 500ms인 조건은 검사의 정확도가 낮아질 가능성이 높은 것으로 나타났다.
Major shortcomings in P300-based CIT are the length of time to complete the test and vulnerability to countermeasures. The present study examined whether inter-stimulus interval (ISI) less than 1 second could make up for the two shortcomings of P300-based CIT. Study 1 examined detection accuracy of P300-based CIT with ISI less than 1 second. Compared to 3000ms ISI, 500ms ISI significantly decreased the difference of P300 amplitude between the probe and the irrelevant stimuli. Although the difference of P300-based amplitude between the probe and the irrelevant stimuli with 800ms ISI also decreased from that with 3000ms ISI, interestingly, the decrease was not significant. Study 2 examined effect of countermeasure in 500ms, 800ms and 3000ms ISI. The effect of countermeasure with 800ms and 3000ms ISI was not significant, while it was significant with 500ms ISI at alpha level of .1. With 500ms ISI, detection accuracy of P300-based CIT diminished. The results of study 1 and 2 suggest that 800ms ISI would supplement the two shortcomings of P300-based CIT without a significant loss of accuracy.
Abootalebi, V., Moradi, M. H., & Khalilzadeh, M. A. (2006). A comparison of methods for ERP assessment in a P300-based GKT. International Journal of Psychophysiology, 62, 309-320.
Allison, B. Z. & Pineda, J. A. (2006). Effects of SOA and flash pattern manipulations on ERPs, performance, and preference: Implications for a BCI system. International Journal of Psychophysiology, 59, 127-140.
Ben-Shakhar, G. (1977). Further study of the dichotomization theory in detection of information. Psychophysiology, 14, 408-413.
Ben-Shakhar, G. (2011). Countermeasures. In Bruno Verschuere, Gerson Ben-Shakhar, and Ewout Meijer (Ed.), Memory Detection: Theory and Application of the Concealed Information Test (pp. 200-214). San Diego: Academic Press.
Ben-Shakhar, G. & Elaad, E. (2002). The guilty knowledge test (GKT) as an application of psychophysiology: Future prospects and obstacles. In Murray Kleiner (Ed.), Handbook of Polygraph Testing (pp. 87-102). San Diego: Academic Press.
Ben-Shakhar, G. & Furedy, J. (1990). Theories and Applications in the Detection of Deception. New York: Springer-Verlag.
Cutmore, T. R. H., Djakovic, T., Kebbell, M. R., & Shum, D. H. K. (2009). An object cue is more effective than a word in ERP-based detection of deception. International Journal of Psychophysiology, 71, 185-192.
Farwell, L. A. & Donchin, E. (1988). Talking off the top of your head: Toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70, 510-523.
Farwell, L. A. & Donchin, E. (1991). The truth will out: Interrogative polygraphy (“lie detection”) with event-related Potentials. Psychophysiology, 28, 531-547.
Gonsalvez, C. J. & Polich, J. (2002). P300 amplitude is determined by target-to-target interval. Psychophysiology, 39, 388-396.
Gratton, G., Coles, M. G. H., Donchin, E. (1983). A new method for of-line removal of ocular artifacts. Electroencephalography and Clinical Neurophysiology, 55, 468-484.
Guger, C., Daban, S., Sellers, E., Holzner, C., Krausz, G., Carabalona, R., Gramatica, F., & Edlinger, G. (2009). How many people are able to control a P300-based brain-computer interface (BCI)? Neuroscience Letters, 462, 94-98.
Johnson, R. (1986). A triarchic model of P300 amplitude. Psychophysiology, 23, 367-384.
Johnson, R. (1993). On the neural generators of the P300 component of the event-related potential. Psychophysiology, 30, 90-97.
Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui V, Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology, 37, 163-178.
Kubo, K. & Nittono, H. (2009). The role of intention to conceal in the P300-based concealed information test. Applied Psychophysiology and Biofeedback, 34, 227-235.
Lins, O. G., Picton, T. W., Berg, P., & Scherg, M. (1993). Ocular artifacts in recording EEGs and event-related potentials. II: Source dipoles and source components. Brain Topography, 6, 65-78.
Luck, S. J. (2005). An introduction to the event- related potential technique. MA: MIT Press.
Mertens, R. & Allen, J. J. (2008). The role of psychophysiology in forensic assessments: Deception detection, ERPs, and virtual reality mock crime scenarios. Psychophysiology, 45, 286- 298.
Podlesny, J. A., (2003). A paucity of operable case facts restricts appbleability of the guilty knowledge technique in FBI criminal polygraph examinations. Forensic Science Communleations, 5, Retieved March 29, 2012, from http://www2. fbi.gov/hq/lab/fsc/backissu/july2003/podlesny.htm.
Polich, J. & Bondurant, T. (1997). P300 sequence effects, probability, and interstimulus interval. Physiology & Behavior, 61, 843-849.
Rosenfeld, J. P., Biroschak, J. R., & Furedy, J. J. (2006). P300-based detection of concealed autobiographical versus incidentally acquired information in target and non-target paradigms. International Journal of Psychophysiology. 60, 251- 259.
Rosenfeld, J. P., Soskins, M., Bosh, G., & Ryan, A. (2004). Simple effective countermeasures to P300-based tests of detection of concealed information. Psychophysiology, 41, 205-219.
Rosenfeld, J. P., Labkovsky, E., Winogard, M., Lui, M. A., Vandenboom, C., & Chedid, E. (2008). The complex trial protocol(CTP): A new, countermeasure-resistant, accurate, P300-based method for detection of concealed information. Psychophysiology, 45, 906-919.
Sasaki, M., Hira, S., and Matsuda, T. (2001). Effects of mental countermeasure on the physiological detection using the event-related brain potentials. Japanese Journal of Psychology, 72, 322- 328.
Semlitsch, H. V., Anderer, P., Schuster, P., & Presslich, O. (1986). A solution for reliable and valid reduction of ocular artifacts, applied to the P300 ERP. Psychophysiology, 23, 695-703.
Soskins, M., Rosenfeld, J. P., & Niendam, T. (2001). The case for peak-to-peak measurement of P300 recorded at .3 hz high pass filter settings in detection of deception. International Journal of Psychophysiology, 40, 173-180.
Struber, D. & Polich, J. (2002). P300 and slow wave from oddball and single-stimulus visual tasks: Inter-stimulus interval effects. International Journal of Psychophysiology, 45, 187-196.
Verschuere, B., Rosenfeld, J. P., Winograd, M., Labkovsky, E., & Wiersema, R. (2009). The role of deception in P300 memory detection. Legal and Criminological Psychology, 14, 253-262.
Winograd, M. R. & Rosenfeld, J, P. (2011). Mock crime application of the Complex Trical Protocol (CTP) P300-based concealed information test.