바로가기메뉴

본문 바로가기 주메뉴 바로가기

ACOMS+ 및 학술지 리포지터리 설명회

  • 한국과학기술정보연구원(KISTI) 서울분원 대회의실(별관 3층)
  • 2024년 07월 03일(수) 13:30
 

logo

단축형 단도박 자기효능감척도(GASS-9)의 개발과 타당화

Development and Validation of the Short Version of the Gambling Abstinence Self-Efficacy Scale(GASS-9)

한국심리학회지: 건강 / The Korean Journal of Health Psychology, (P)1229-070X; (E)2713-9581
2018, v.23 no.4, pp.939-962
https://doi.org/10.17315/kjhp.2018.23.4.007
전영민 (한국도박문제관리센터)

초록

본 연구의 목적은 단도박 자기효능감척도(Gambling Abstinence Self-efficacy Scale: GASS)의 21문항을 기반으로 한국의 임상표본에 적합한 단축형 GASS(GASS-9)를 구성하고 그 타당도를 검증하는 것이다. 연구 참여자는 도박중독 치료를 받으러 온 2,945명(남성 96.8%)이었다. 이들을 무선적으로 두 집단으로 나눈 후, 임상표본 1(1,472명)을 대상으로 한글로 번안한 GASS를 실시하였고 탐색적 요인분석을 통해 9문항 3요인(부적정서, 재정압박, 도박자극) 구조의 GASS-9를 구성하였다. GASS-9의 3개 요인은 전체 변량의 75.36%를 설명하였다. 임상표본 2(1,473명)의 자료에 대해서는 임상표본 1을 기반으로 구성된 GASS-9에 대한 확인적 요인분석과 타당도를 검증하였다. 확인적 요인분석 결과 9문항의 3요인구조는 전반적으로 양호한 적합도를 보였고, 각 하위척도의 내적 일관성 신뢰도는 0.76~0.88, 전체 문항의 신뢰도는 0.85었다. 또한 수렴 및 변별 타당도, 준거관련 타당도와 변화민감도를 확인하였다. 문제집단과 비문제집단을 변별해주는 GASS-9 전체점수의 절단점은 37점(민감도 58.24%, 특이도 68.67%), 부적정서 요인의 절단점은 11점(민감도 35.88%, 특이도 87.95%), 재정압박 요인의 절단점은 10점(민감도 47.65%, 특이도 77.71%), 도박자극 요인의 절단점은 13점(민감도 61.76%, 특이도 66.87%)이었다. 마지막으로 본 연구의 의의와 제한점에 대해 논의하였다.

keywords
단도박, 치료효과, 자기효능감, 타당도, 절단점, gambling abstinence, treatment outcome, self-efficacy, validity, cutoff-score

Abstract

The purpose of this study was to construct a short version of the Gambling Abstinence Self-efficacy Scale (GASS-9) based on Gambling Abstinence Self-efficacy Scale (GASS) and confirm the validity of the GASS-9, which is optimal for the clinical sample in Korea. Two thousand nine hundred and forty five problem/pathological gamblers (male 96.8%) seeking treatment completed the GASS. They were randomly divided into two groups. Explanatory factor analysis was performed on the clinical data sample for group 1(1,472) to construct GASS-9, confirmatory factor analysis (CFA) was performed on clinical sample group 2(1,473), and the validity was confirmed. Based on explanatory factor analysis on the clinical data sample for group 1, GASS-9 consisting of three factors (negative emotion, financial pressure, gambling stimulus) and nine items was constructed. These three factors accounted for 75.36% of the total variance. Reliability and validity were confirmed using the clinical sample group 2. Results from the CFA suggested that three-factors consisting of nine items was appropriate in goodness of fit. GASS-9 showed good convergent validity, discriminant validity, criterion-related validity, and sensitivity to change. A cutoff-score of ≤37 for the total score of GASS-9 was found to have 58.24 sensitivity and 68.67 specificity for the problem gambling. The implications and limitations of the present study along with suggestions for future research are discussed.

keywords
단도박, 치료효과, 자기효능감, 타당도, 절단점, gambling abstinence, treatment outcome, self-efficacy, validity, cutoff-score

참고문헌

1.

김청택 (2016). 탐색적 요인분석의 오남용 문제와 교정. 조사연구, 17(1), 1-29.

2.

손원숙 (2003). 심리검사 번안에 대한 통합적 접근. 한국심리학회지: 일반, 22(2), 57-80.

3.

심미영, 이온유, 김은희 (2016). 대학생의 가족지지가 스마트폰 중독에 미치는 영향: 스트레스와 자기효능감의 매개효과를 중심으로. 복지상담교육연구, 5(2), 27-47.

4.

임성범, 박영준 (2013). 대학생의 도박중독 결정요인과지역사회 개입 방안에 관한 연구 - 자기효능감의매개효과를 중심으로. 한국지역사회복지학, 45, 229-253.

5.

전겸구, 최상진, 양병창 (2001). 통합적 한국판 CES -D 개발. 한국심리학회지: 건강, 6(1), 59-76.

6.

전영민 (2005). 알코올 의존자의 변화동기 평가: 변화단계척도(SOCRATES) 개발연구. 한국심리학회지: 임상, 24(1), 207-223.

7.

전영민 (2018). 도박중독 변화동기척도(SOCRATES-G)의 개발과 타당화 연구. 한국심리학회지: 건강, 23(2), 447-474.

8.

전영민, 양수, 김경훈 (2012). 도박변화동기척도(K-SOCRATES-G)의 요인구조. 2012년 한국중독심리학회 춘계학술대회, pp. 23-24. 5월 12일. 대전:충남대학교.

9.

전영민, 임정민, 이기령(2012). 도박충동척도의 요인구조. 한국중독심리학회 2012 춘계학술대회 포스트발표. 5월 12일. 대전: 충남대학교.

10.

전영민, 정보영, 윤진욱 (2016). 2015 치유재활사업 효과평가보고서. 서울: 한국도박문제관리센터.

11.

정귀임, 김장회 (2016). 중학생의 부ㆍ모애착 및 또래애착과 스마트폰 중독의 관계에서 자기효능감의 매개효과. 재활심리연구, 23(3), 599-561.

12.

충남대학교 산학협력단 (2010). 사행산업이용실태조사. 서울: 사행산업통합감독위원회.

13.

홍세희 (2000). 구조 방정식 모형의 적합도 지수 선정기준과 그 근거. 한국심리학회지: 임상, 19(1), 161-177.

14.

American Psychiatric Association (2013). Diagnostic and Statistical Manual of Mental Disorders (5th ed.). Washington DC: American Psychiatric Association.

15.

Arrindell, W., & van der Ende, J. (1985). An empirical test of the utility of the observations-to-variables ratios in factor and component analysis. Applied Psychological Measurement, 9, 165–178.

16.

Bandura, A. (1997). Self-efficacy: The exercise of control. New York: W.H. Freeman.

17.

Barbaranelli, C., Ghezzi, V., Fida, R., & Vecchione, M. (2017). Psychometric characteristics of a new scale for measuring self-efficacy in the regulation of bambling behavior. Frontiers in Psychology, 8, 1025. https://www.ncbi.nlm.nih.gov/pubmed/28676781.

18.

Belding, M. A., Iguchi, M. Y., & Lamb, R. J. (1996). Stages of change in methadone maintenance:Assessing the convergent validity of two measures. Psychology of Addictive Behaviors, 10(3), 157-166.

19.

Bentler, P. M. (1990). Comparative fit indexes in structural models. Psychological Bulletin, 107(2), 238-246.

20.

Boudreaux, E. D., Sullivan, A., Abar, B., Bernstein, S. L., Ginde, A. A., & Camargo Jr, C. A. (2012). Motivation rulers for smoking cessation: a prospective observational examination of construct and predictive validity. Addiction Science & Clinical Practice, 7, 8.

21.

Brown, M. W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen &J. S. Long (Eds.), Testing structural equation models (pp. 136-162). Newbury Park, CA: Sage.

22.

Casey, L., Oei, T., Melville, K., Bourke, E., & Newcombe, P. (2008). Measuring self-efficacy in gambling: The gambling refusal self-efficacy questionnaire. Journal of Gambling Studies, 24(2), 229-246. http://dx.doi.org/10.1007/s10899-007-9076-2.

23.

Cattell, R. B. (1966). The scree test for the number of factors. Multivariate Behavioral Research, 1(2), 245-276.

24.

Chun, Y. M., Lee, J. I., & Park, E. K. (2018). Development and validation of the clinical version of the gambling related cognitions scale-12 in a Korean clinical sample. Korean Journal of Clinical Psychology, 37(1), 104-118.

25.

Cliff, N. (1988). The eigenvalues-greater-than-one rule and the reliability of components. Psychological Bulletin, 103(2), 276-279.

26.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ:Lawrence Earlbaum Associates.

27.

Condiotte, M. M., & Lichtenstein, E. (1981). Self-efficacy and relapse in smoking cessation programs. Journal of Consulting and Clinical Psychology, 49, 648-658.

28.

Costello, A. B., & Osborne, J. W. (2005). Best practices in exploratory factor analysis: Four recommendations for getting the most from your analysis. Practical Assessment Research &Evaluation, 10(7), 1-9.

29.

Crawford, C. B. (1975). Determining the number of interpretable factors. Psychological Bulletin, 82(2), 226-237.

30.

Denollet, J. (1993). Sensitivity of outcome assessment in cardiac rehabilitation. Journal of Consulting and Clinical Psychology, 61(4), 683-695.

31.

Ferris, J., & Wynne, H. (2001). The Canadian problem gambling index: User manual. Toronto, ON: Canadian Centre on Substance Abuse.

32.

García de Yébenes Prous, M. J., Salvanés, F. R., & Ortells, L. C. (2008). Responsiveness of outcome measures. Reumatología Clínica (English Edition), 4(6), 240-247.

33.

Gomes, K., & Pascual-Leone, A. (2009). Primed for change: facilitating factors in problem gambling treatment. Journal of Gambling Studies, 25(1), 1-17.

34.

Gomes, K., & Pascual-Leone, A. (2014). A resource model of change: Client factors that influence problem gambling treatment outcomes. Journal of Gambling Studies, 31(4), 1651-1669.

35.

Greinera, M., Pfeiffer, D., & Smith, R. D. (2000). Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Preventive Veterinary Medicine, 45, 23-41.

36.

Hair, J. E., Anderson, R. E., Tatham, R. L., & Black, W. C. (1995). Multivariate data analysis (4th ed.). Upper Saddle River, NJ: Prentice Hall.

37.

Hasannia, T., & Khalili, G. R. (2015). The relationship between internet addiction and self-efficacy among high school students in Gorgan, Iran. Journal of Psychology & Behavioral Studies, 3(10), 338-342.

38.

Hayton, J. C., Allen, D. G., & Scarpello, V. (2004). Factor retention decisions in exploratiory factor analysis: A tutorial on parallel analysis. Organizational Research Methods, 7(2), 191-205.

39.

Hesse, M. (2006). The readiness ruler as a measure of readiness to change poly-drug use in drug abusers. Harm Reduction Journal, 3, 3-5.

40.

Hodgins, D., Peden, N., & Makarchuk, K. (2004). Self-efficacy in pathological gambling treatment outcome: Development of a gambling abstinence self-efficacy scale (GASS). International Gambling Studies, 4(2), 99-108.

41.

Horn, J. L. (1965). A rationale and test for the number of factors in factor analysis. Psychometrika, 30(2), 179-185.

42.

Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis:Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1-55.

43.

Husted, J. A., Cook, R. J., Farewell, V. T., & Gladman, D. D. (2000). Methods for assessing responsiveness:a critical review and recommendations. Journal of Clinical Epidemiology, 53, 459-468.

44.

Joyce, A. S., MacNair-Semands, R., Tasca, G. A., & Ogrodniczuk, J. S. (2011). Factor structure and validity of the therapeutic factors inventory–short form. Group Dynamics: Theory, Research, and Practice, 15(3), 201-219.

45.

Kass, R., & Tinsley, H. (1979). Factor analysis. Journal of Leisure Research, 11, 120–138.

46.

Kline, R. B. (1994). An easy guide to factor analysis. New York: Routledge.

47.

Lai, M. H. C., Wu, A. M. S., & Tong, K. K. (2015). Validation of the gambling refusal self-efficacy questionnaire for Chinese undergraduate students. Journal of Gambling Studies, 31, 243-256.

48.

Lesieur, H. R., & Blume, S. B. (1987). The South Oaks Gambling Screen (SOGS): A new instrument for the identification of pathological gamblers. American Journal of Psychiatry, 144, 1184-1188.

49.

Maisto, S. A., Krenek, M., Chung, T., Martin, C. S., Clark, D., & Cornelius, J. (2011). A comparison of the concurrent and predictive validity of three measures of readiness to change alcohol use in a clinical sample of adolescents. Psychological Assessment, 23(4), 983-994.

50.

Marlatt, G. A. (1985). Situational determinants of relapse and skill training interventions. In G. A. Marlatt & J. R. Gordon (Eds.), Relapse prevention: Maintenance strategies in treatment of addictive behaviours (pp. 71-127). New York:The Guilford Press.

51.

May, R. K., Whelan, J. P., Steenbergh, T. A., & Meyers, A. W. (2003). The gambling selfeffficacy questionnaire: An initial psychometric evaluation. Journal of Gambling Studies, 19(4), 339-357.

52.

Miller, W. R., & Rollnick, S. (2002). Motivational interviewing: Preparing People for Change (2nd ed.). New York: Guilford Press.

53.

Miller, W. R., & Tonigan, J. S. (1996). Assessing drinkers’ motivation for change: The Stages of Change Readiness and Treatment Eagerness Scale (SOCRATES). Psychology of Addictive Behaviors, 10(2), 81-89.

54.

Mühlan, H., Bullinger, M., Power, M., & Schmidt, S. (2008). Short forms of subjective quality of life assessments from cross-cultural studies for use in surveys with different populations. Clinical Psychology and Psychotherapy, 15, 142–153.

55.

O'Connor, B. P. (2000). SPSS and SAS programs for determining the number of components using parallel analysis and Velicer's MAP test. Behavior Research Methods, Instruments, &Computers, 32(3), 396-402.

56.

Pook, M., & Tuschen-Caffier, B. (2004). Sensitivity to change of scales assessing symptoms of bulimia nervosa. Psychiatry Research, 128(1), 71-78.

57.

Prochaska, J. O., & DiClemente, C. C. (1986). Toward a comprehensive model of change. In W. R. Miller & N. Heather (Eds.), Treating addictive behaviors: Processes of change (pp. 3-27). Boston, MA: Springer.

58.

Prochaska, J. O., Velicer, W. F., Rossi, J. S., Goldstein, M. G., Marcus, B. H., Rakowski, W., . . . Rossi, S. R. (1994). Stages of change and decisional balance for 12 problem behaviors. Health Psychology, 13(1), 39-46.

59.

Radloff, L. S. (1977). The CES-D scale: A self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385-401.

60.

Raylu, N., & Oei, T. P. (2004a). The Gambling Related Cognitions Scale (GRCS): development, confirmatory factor validation and psychometric properties. Addiction, 99(6), 757-769. http://www.ncbi.nlm.nih.gov/pubmed/15139874.

61.

Raylu, N., & Oei, T. P. (2004b). The gambling urge scale: Development, confirmatory factor validation, and psychometric properties. Psychology of Addictive Behaviors, 18(2), 100-105. http://www.ncbi.nlm.nih.gov/pubmed/15238051.

62.

Reed, G. R., Velicer, W. F., Prochaska, J. O., Rossi, J. S., Marcus, B. H.(1997). What makes a good staging algorithm: Examples from regular exercise. American Journal of Health Promotion, 12(1), 57-66.

63.

Rodda, S. N., Lubman, D. I., Iyer, R., Gao, C. X., & Dowling, N. A. (2015). Subtyping based on readiness and confidence: The identification of help-seeking profiles for gamblers accessing web-based counselling. Addiction, 110(3), 494-501.

64.

Roh, S. E., & Kim, J. H. (2017). The Influence of Social Factors of Crisis Youth on Addiction -Focused on moderating effects of self-efficacy. Korean Association of Addiction Crime Review, 7(4), 23-41.

65.

Schnoll, R. A., Martinez, E., Tatum, K. L., Glass, M., Bernath, A., Ferris, D., & Reynolds, P. (2011). Increased self-efficacy to quit and perceived control over withdrawal symptoms predict smoking cessation following nicotine dependence treatment. Addictive Behaviors, 36, 144 –147.

66.

Singh, A. N., Matson, J. L., Mouttapa, M., Pella, R. D., Hill, B. D., & Thorson, R. (2009). A critical item analysis of the QABF: development of a short form assessment instrument. Research in Developmental Disabilities, 30(4), 782-792..

67.

Smith, G. T., McCarthy, D. M., & Anderson, K. G. (2000). On the sins of short-form development. Psychological Assessment, 12(1), 102-111.

68.

Stewart, M. J., Davis MacNevin, P. L., Hodgins, D. C., Barrett, S. P., Swansburg, J., & Stewart, S. H. (2016). Motivation-matched approach to the treatment of problem gambling: A case series pilot study. Journal of Gambling Issues, 33, 124-147.

69.

Stinchfield, R., Winters, K. C., Botzet, A., Jerstad, S., & Breyer, J. (2007). Development and psychometric evaluation of the Gambling Treatment Outcome Monitoring System (GAMTOMS). Psychology of Addictive Behaviors, 21(2), 174-184.

70.

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285-1293.

71.

Takamatsu, S. K., Martens, M. P., & Arterberry, B. J. (2016). Depressive Symptoms and Gambling Behavior: Mediating Role of Coping Motivation and Gambling Refusal Self-Efficacy. Journal of Gambling Studies, 32(2), 535-546.

72.

Toneatto, T., & Ladoceur, R. (2003). Treatment of pathological gambling: A critical review of the literature. Psychology of Addictive Behaviors, 17, 284-292.

73.

Tucker, L. R., & Lewis, C. (1973). A reliability coefficient for maximum likelihood factor analysis. Psychometrica, 38(1), 1-10.

74.

Witkiewitz, K., Donavan, D. M., & Hartzler, B. (2012). Drink refusal training as part of comorbid behavioral intervention: Effectiveness and mechanisms of change. Journal of Consulting and Clinical Psychology, 80, 440–449.

75.

Wohl, M. J., & Sztainert, T. (2011). Where did all the pathological gamblers go? Gambling symptomatology and stage of change predict attrition in longitudinal research. Journal of Gambling Studies, 27(1), 155-169.

76.

Zwick, W. R., & Velicer, W. F. (1986). Comparison of five rules for determining the number of components to retain. Psychological Bulletin, 99(3), 432-442.

77.

Zywiak, W. H., Connors, G. J., Maisto, S. A., & Westerberg, V. S. (1996). Section IIA. Replication and extension of Marlatt’s taxonomy: Relapse research and the reasons for drinking questionnaire: A factor analysis of Marlatt’s relapse taxonomy. Addiction, 91, S121–S130.

한국심리학회지: 건강